Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Resistance to fungal infections is attributed to engagement of host pattern-recognition receptors, notably the β-glucan receptor Dectin-1 and the integrin Mac-1, which induce phagocytosis and antifungal immunity. However, the mechanisms by which these receptors coordinate fungal clearance are unknown. We show that upon ligand binding, Dectin-1 activates Mac-1 to also recognize fungal components, and this stepwise process is critical for neutrophil cytotoxic responses. Both Mac-1 activation and Dectin-1- and Mac-1-induced neutrophil effector functions require Vav1 and Vav3, exchange factors for RhoGTPases. Mac-1- or Vav1,3-deficient mice have increased susceptibility to systemic candidiasis that is not due to impaired neutrophil recruitment but defective intracellular killing of C. albicans yeast forms, and Mac-1 or Vav1,3 reconstitution in hematopoietic cells restores resistance. Our results demonstrate that antifungal immunity depends on Dectin-1-induced activation of Mac-1 functions that is coordinated by Vav proteins, a pathway that may localize cytotoxic responses of circulating neutrophils to infected tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244687PMC
http://dx.doi.org/10.1016/j.chom.2011.10.009DOI Listing

Publication Analysis

Top Keywords

β-glucan receptor
8
receptor dectin-1
8
dectin-1 activates
8
integrin mac-1
8
antifungal immunity
8
cytotoxic responses
8
mac-1
6
activates integrin
4
mac-1 neutrophils
4
neutrophils vav
4

Similar Publications

IL-2 agonists significantly modulate T cell regulation, impacting activation, proliferation, differentiation, and immune homeostasis. Interleukin-2 (IL-2) is crucial for T cell growth and function, binding to the IL-2 receptor to trigger signaling pathways that balance immune responses. IL-2 promotes the expansion of effector T cells and enhances regulatory T cells (Tregs), preventing autoimmune responses.

View Article and Find Full Text PDF

Despite advancements in systemic therapy, the mortality rate for patients with metastatic melanoma remains around 70%, underscoring the imperative for alternative treatment strategies. Through the establishment of a chemoresistant melanoma model and a subsequent drug investigation, we have identified pacritinib, a medication designed for treating myelofibrosis and severe thrombocytopenia, as a potential candidate to overcome resistance to melanoma therapy. Our research reveals that pacritinib, administered at clinically achievable concentrations, effectively targets dacarbazine-resistant melanoma cells by suppressing IRAK1 rather than JAK2.

View Article and Find Full Text PDF

Aberrant activation of fibroblast growth factor receptors (FGFRs) plays a critical role in tumorigenesis across multiple cancer types, driving the development of various FGFR inhibitors. Despite clinical advances, therapeutic efficacy remains limited by the emergence of drug resistance, primarily mediated by gatekeeper mutations in FGFRs. To overcome this challenge, we designed and synthesized a novel series of 7-(1-methyl-1-indole-3-yl)-5-pyrrolo[2,3-]pyrazine derivatives as covalent pan-FGFR inhibitors targeting both wild-type and gatekeeper mutants.

View Article and Find Full Text PDF

Background And Objectives: Neuroimaging findings in immune effector cell-associated neurotoxicity syndrome (ICANS) have not been systematically described. We created the chimeric antigen receptor (CAR) T-cell Neurotoxicity Imaging Virtual Archive Library (CARNIVAL), a centralized imaging database for children and young adults receiving CAR T-cell therapy. Objectives of this study were to (1) characterize neuroimaging findings associated with ICANS and (2) determine whether specific ICANS-related neuroimaging findings are associated with individual neurologic symptoms.

View Article and Find Full Text PDF

Plant-Derived Anticancer Candidates Targeting mTOR, EGFR, HER2: Insights From Molecular Docking and Dynamics Simulations.

Chem Biodivers

September 2025

School of Traditional Chinese Materia Medica, Key Laboratory of Ethnomedicine Material Basis & Pharmacological Mechanisms, Shenyang, Shenyang Pharmaceutical University, Shenyang, China.

In intracellular signaling, mammalian target of rapamycin (mTOR) as an important mammalian target for breast cancer therapy, plays a key role in receiving upstream signals from growth factor receptors such as epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Using 30 compounds from Meehania fargesii var. Radicans, structure-based virtual screening and molecular docking were performed to develop novel and safe breast cancer targeting inhibitors from natural products.

View Article and Find Full Text PDF