Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A number of histone demethylases have been identified and biochemically characterized, yet their biological functions largely remain uncharacterized, particularly in the context of human diseases such as cancer. In this study, we describe important roles for the histone demethylase KDM3A, also known as JMJD1A, in human carcinogenesis. Expression levels of KDM3A were significantly elevated in human bladder carcinomas compared with nonneoplastic bladder tissues (p < 0.0001), when assessed by real-time PCR. We confirmed that some other cancers including lung cancer also overexpressed KDM3A, using cDNA microarray analysis. Treatment of cancer cell lines with small interfering RNA targeting KDM3A significantly knocked down its expression and resulted in the suppression of proliferation. Importantly, we found that KDM3A activates transcription of the HOXA1 gene through demethylating histone H3 at lysine 9 di-methylation by binding to its promoter region. Indeed, expression levels of KDM3A and HOXA1 in several types of cancer cell lines and bladder cancer samples were statistically correlated. We observed the down-regulation of HOXA1 as well as CCND1 after treatment with KDM3A siRNA, indicating G(1) arrest of cancer cells. Together, our results suggest that elevated expression of KDM3A plays a critical role in the growth of cancer cells, and further studies may reveal a cancer therapeutic potential in KDM3A inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.26501DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
kdm3a
10
cancer
9
histone demethylase
8
demethylase kdm3a
8
hoxa1 gene
8
expression levels
8
levels kdm3a
8
cancer cell
8
cell lines
8

Similar Publications

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF

Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.

Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.

View Article and Find Full Text PDF

NSUN6 Promotes Gastric Cancer Progression by Stabilizing CEBPZ mRNA in a mC-Dependent Manner.

Appl Biochem Biotechnol

September 2025

Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.

Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.

View Article and Find Full Text PDF