Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent experimental and theoretical investigations on resonant electron scattering off DNA and DNA fragments using low-energy electrons (LEEs), to propose the mechanism for single strand breaks (SSBs) and double strand breaks (DSBs), have received considerable attention. It is our purpose here to understand theoretically the comprehensive route to SSB in a selected DNA fragment, namely, 2'-deoxycytidine-3'-monophosphate (3'-dCMPH), induced by LEE (0-3 eV) scattering using the local complex potential based time-dependent wave packet (LCP-TDWP) approach. To the best of our knowledge, there is no time-dependent quantum mechanical study that has been reported in the literature for this DNA fragment to date. Initial results obtained from our calculation in the gas phase provide a good agreement with experimental observation and show the plausibility of SSB at 0.75 eV, which is very close to the highest SSB yield reported from the experimental measurement (0.8 eV) on plasmid DNA in the condensed phase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp207952xDOI Listing

Publication Analysis

Top Keywords

strand breaks
12
single strand
8
local complex
8
complex potential
8
potential based
8
based time-dependent
8
time-dependent wave
8
wave packet
8
dna fragment
8
dna
5

Similar Publications

High radon levels in the environment can lead to adverse biological effects such as DNA damage, thereby increasing cancer risk, especially lung cancer. This study focused on Tande-Tande sub-village in Mamuju, West Sulawesi, Indonesia, an area known for naturally high indoor radon concentrations, where inhabitants have been chronically exposed to radon throughout their lives. Blood samples from 38 subjects in Tande-Tande sub-village and the control area, Topoyo village, were examined.

View Article and Find Full Text PDF

Resistance to platinum-based drugs and PARP inhibitors (PARPi) is the leading cause of treatment failure in epithelial ovarian cancer (EOC). This study aimed to identify resistance mechanisms shared by both. Using bioinformatic analyses, EOC tissues, primary tumor cells and organoids, and chemoresistant cell lines, we identified lymphoid enhancer-binding factor 1 (LEF1) as a candidate, whose expression was increased in both platinum-resistant and PARPi-resistant tumors.

View Article and Find Full Text PDF

The RecBC complex protects single-stranded DNA gaps during lesion bypass.

Proc Natl Acad Sci U S A

September 2025

Cancer Research Center of Marseille: Team DNA Damage and Genome Instability|CNRS, Inserm, Institut Paoli-Calmettes, Aix Marseille Université, Marseille 13009, France.

Following encounter with an unrepaired DNA lesion, replication is halted and can restart downstream of the lesion leading to the formation of a single-stranded DNA (ssDNA) gap. To complete replication, this ssDNA gap is filled in by one of the two lesion tolerance pathways: the error-prone Translesion Synthesis (TLS) or the error-free Homology Directed Gap Repair (HDGR). In the present work, we evidence a role for the RecBC complex distinct from its canonical function in homologous recombination at DNA double strand breaks.

View Article and Find Full Text PDF

Cell senescence is a state of stable proliferation arrest characterized by morphological changes and high senescence-associated β-galactosidase (SA-β-gal) activity. Inducing senescence in cancer cells is beneficial for cancer therapy due to proliferation arrest, however, the mechanisms underlying this process remain insufficiently understood. Therefore, the present study investigated the mechanisms of radiation-induced cellular senescence in A549 human lung cancer cells, focusing on the DNA damage response and cell cycle regulation.

View Article and Find Full Text PDF

Radiation exposure initiates a cascade of reactions, including the release of reactive oxygen species, DNA double-strand breaks, and cellular apoptosis, leading to cell death, tissue damage, and potentially the development of cancer. Consequently, there is an urgent need to develop highly effective and low-toxicity radioprotective agents. Traditional chemically synthesized protective agents face significant limitations in clinical applicability due to their pronounced off-target toxicity, narrow therapeutic window, and high production costs.

View Article and Find Full Text PDF