Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: With the increased commercial availability of intensity modulated arc therapy (IMAT) comes the need for comprehensive QA programs, covering the different aspects of this newly available technology. This manuscript proposes such a program for the RapidArc (RA) (Varian Medical Systems, Palo Alto) IMAT solution.

Methods: The program was developed and tested out for a Millennium120 MLC on iX Clinacs and a HighDefinition MLC on a Novalis TX, using a variety of measurement equipment including Gafchromic film, 2D ion chamber arrays (Seven29 and StarCheck, PTW, Freiburg, Germany) with inclinometer and Octavius phantom, the Delta4 systam (ScandiDos, Uppsala, Sweden) and the portal imager (EPID). First, a number of complementary machine QA tests were developed to monitor the correct interplay between the accelerating/decelerating gantry, the variable dose rate and the MLC position, straining the delivery to the maximum allowed limits. Second, a systematic approach to the validation of the dose calculation for RA was adopted, starting with static gantry and RA specific static MLC shapes and gradually moving to dynamic gantry, dynamic MLC shapes. RA plans were then optimized on a series of artificial structures created within the homogeneous Octavius phantom and within a heterogeneous lung phantom. These served the double purpose of testing the behavior of the optimization algorithm (PRO) as well as the precision of the forward dose calculation. Finally, patient QA on a series of clinical cases was performed with different methods. In addition to the well established in-phantom QA, we evaluated the portal dosimetry solution within the Varian approach.

Results: For routine machine QA, the "Snooker Cue" test on the EPID proved to be the most sensitive to overall problem detection. It is also the most practical one. The "Twinkle" and "Sunrise" tests were useful to obtain well differentiated information on the individual treatment delivery components. The AAA8.9 dose calculations showed excellent agreement with all corresponding measurements, except in areas where the 2.5 mm fixed fluence resolution was insufficient to accurately model the tongue and groove effect or the dose through nearly closed opposing leafs. Such cases benefited from the increased fluence resolution in AAA10.0. In the clinical RA fields, these effects were smeared out spatially and the impact of the fluence resolution was considerably less pronounced. The RA plans on the artificial structure sets demonstrated some interesting characteristics of the PRO8.9 optimizer, such as a sometimes unexpected dependence on the collimator rotation and a suboptimal coverage of targets within lung tissue. Although the portal dosimetry was successfully validated, we are reluctant to use it as a sole means of patient QA as long as no gantry angle information is embedded.

Conclusions: The all-in validation program allows a systematic approach in monitoring the different levels of RA treatments. With the systematic approach comes a better understanding of both the capabilities and the limits of the used solution. The program can be useful for implementation, but also for the validation of major upgrades.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.3622672DOI Listing

Publication Analysis

Top Keywords

systematic approach
12
fluence resolution
12
octavius phantom
8
dose calculation
8
mlc shapes
8
portal dosimetry
8
program
5
mlc
5
dose
5
implementing rapidarc
4

Similar Publications

Background: Hypertension remains a critical public health issue in Germany, affecting millions of individuals. Mobile health applications (mHealth apps) offer promising solutions for improving patient outcomes and adherence in hypertension management. Despite their advantages in healthcare, the adoption of mHealth apps by general practitioners (GPs) in Germany remains limited to date.

View Article and Find Full Text PDF

The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.

View Article and Find Full Text PDF

Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.

View Article and Find Full Text PDF

Large language models (LLMs) have been successfully used for data extraction from free-text radiology reports. Most current studies were conducted with LLMs accessed via an application programming interface (API). We evaluated the feasibility of using open-source LLMs, deployed on limited local hardware resources for data extraction from free-text mammography reports, using a common data element (CDE)-based structure.

View Article and Find Full Text PDF

Purpose: Accurate prediction of human clearance (CL) is essential in early drug development. Single Species Scaling (SSS) using rat pharmacokinetic (PK) data, particularly with unbound plasma fraction (f), is widely used. However, its accuracy declines for compounds with extremely low f, and no systematic method has addressed this limitation.

View Article and Find Full Text PDF