Effect of hyperglycemia on the changes of intracellular [Ca2+]i in heart myoblast.

Chin J Physiol

Department of Medical Research, Kuang-Tien General Hospital, Taichung 43353, Taiwan, Republic of China.

Published: October 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A rise in cytosolic free Ca2+ is the immediate trigger for contraction in heart muscle. In the present study, we investigated changes of intracellular Ca2+ increased by potassium chloride (KCl) and phenylephrine (PE) under hyperglycemia in rat heart myoblast H9c2 cells (BCRC 60096), respectively. We employed the fluorescent Ca2+-indicator, fura-2, and digital imaging microscopy to measure [Ca2+]i in H9c2 cells. Cells were cultured in hyperglycemic (30 mM glucose) Dulbecco's Modified Eagle's Medium. The variation of [Ca2+]i induced by KCI and PE in hyperglycemia was examined, respectively. Moreover, tiron, one of the antioxidants, was pretreated in hyperglycemia-treated H9c2 cells to measure the role of free radicals in the changes of intracellular [Ca2+]i. An influx in intracellular Ca2+ induced by KCl or PE was observed in a dose-dependent manner and reached the highest concentration of 434 +/- 42.3 nM and 443 +/- 42.8 nM (n = 24 cells), respectively. Moreover, this increase of intracellular [Ca2+]i induced by KCl or PE was markedly reduced in cells exposed to hyperglycemia (434 +/- 42.3 vs. 1.26 +/- 0.21 nM and 443 +/- 42.8 vs. 2.54 +/- 0.25 nM, n = 24 cells, P < 0.001, respectively). Similar changes were not observed in cells received mannitol showing same osmolarity. However, the reduction of intracellular [Ca2+]i induced by hyperglycemia was abolished significantly in the presence of tiron. Our results suggest that an increase of intracellular Ca2+ by KCl or PE in heart cell was markedly reduced by hyperglycemic treatment; mediation of free radicals in this action can be considered because it was reversed in the presence of tiron.

Download full-text PDF

Source
http://dx.doi.org/10.4077/cjp.2010.amk057DOI Listing

Publication Analysis

Top Keywords

intracellular [ca2+]i
16
changes intracellular
12
intracellular ca2+
12
h9c2 cells
12
[ca2+]i induced
12
heart myoblast
8
cells
8
free radicals
8
induced kcl
8
434 +/-
8

Similar Publications

Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.

View Article and Find Full Text PDF

Objective: This study aimed to probe the role of Shenling Baizhu powder (SLBZP) in inhibiting breast cancer (BC) lung metastasis, focusing on epithelial-to-mesenchymal transition (EMT) and ferroptosis.

Methods: BC 4T1 cells were treated with low (3.13 µg/mL) and high (12.

View Article and Find Full Text PDF

Plant-Derived Anticancer Candidates Targeting mTOR, EGFR, HER2: Insights From Molecular Docking and Dynamics Simulations.

Chem Biodivers

September 2025

School of Traditional Chinese Materia Medica, Key Laboratory of Ethnomedicine Material Basis & Pharmacological Mechanisms, Shenyang, Shenyang Pharmaceutical University, Shenyang, China.

In intracellular signaling, mammalian target of rapamycin (mTOR) as an important mammalian target for breast cancer therapy, plays a key role in receiving upstream signals from growth factor receptors such as epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Using 30 compounds from Meehania fargesii var. Radicans, structure-based virtual screening and molecular docking were performed to develop novel and safe breast cancer targeting inhibitors from natural products.

View Article and Find Full Text PDF

Identification and antiviral mechanism of a novel chicken-derived interferon-related antiviral protein targeting PRDX1.

PLoS Pathog

September 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China.

In this study, we identified a new chicken-specific protein, named chicken interferon-related antiviral protein (chIRAP) after sequence analysis and comparison, which inhibited the proliferation of various viruses including influenza A virus (IAV) and Newcastle Disease Virus (NDV) in vitro, and chicken embryos with high expression of chIRAP reduced IAV infection. Mass spectrometry analysis of chIRAP interacting proteins and screening of interacting proteins affecting the function of chIRAP revealed that the deletion of endogenous chicken peroxiredoxin 1 (chPRDX1) significantly reduced the antiviral effect of chIRAP. In order to clarify the functional site of chPRDX1 affecting the antiviral effect of chIRAP, we constructed the point mutants of chPRDX1 based on the results of molecular docking (D79A, T90A, K93A, Q94A, R110A, R123A), and screened the sites affecting the antiviral effects of chIRAP by knockdown of endogenous chPRDX1 combined with the overexpression mutant strategy, the results showed that the mutations in the sites affected the antiviral effects of chIRAP to different degrees, with D79A being the most significant, and the D79A mutation of chPRDX1 reduces the ability of chPRDX1 to regulate reactive oxygen species (ROS).

View Article and Find Full Text PDF

In adult mammals and other highly developed animals, incomplete wound healing, scar formation, and fibrosis occur. No treatment for complete tissue regeneration is currently available. However, in mice, at up to 13 days of gestation, early embryonic wounds regenerate without visible scarring.

View Article and Find Full Text PDF