98%
921
2 minutes
20
Objective: To compare the effect between vascularization osteogenesis and membrane guided osteogenesis in the bone repair by the tissue engineered bone with pedicled fascial flap packing autologous red bone marrow (ARBM), so as to provide a reference for the bone defect repair in clinic.
Methods: The tissue engineered bone was constructed with ARBM and the osteoinductive absorbing recombinant human materials with recombinant human bone morphogenetic protein 2. Sixty New Zealand rabbits (aged 4-5 months, weighing 2.0-2.5 kg) were randomly divided into group A (n = 16), group B (n = 22), and group C (n = 22). The complete periosteum defect model of 1.5 cm in length was prepared in right ulnar bone, then the tissue engineered bone was implanted in the bone defect area in group A, the tissue engineered bone with free fascial flap in group B, and the tissue engineered bone with pedicled fascial flap in group C. At 4, 8, 12, and 16 weeks, the tissue of bone defect area was harvested from 4 rabbits of each group for the general, histological, and immunohistochemical staining observations; at 8, 12, and 16 weeks, 2 rabbits of groups B and C, respectively were selected to perform ink perfusion experiment by axillary artery.
Results: The general observation showed that the periosteum-like tissues formed in the fascial flap of groups B and C, chondroid tissues formed in group B, new bone formed in group C, and the fibrous and connective tissues in group A at 4 and 8 weeks; a few porosis was seen in group A, more new bone in group B, and bone stump formation in group C at 12 and 16 weeks. Histological observation showed that there were few new blood vessels and new bone trabeculae in groups A and B, while there were large amounts of new blood vessels and mature bone trabeculae in group C at 4 and 8 weeks. There were a few new blood vessels and new bone trabeculae in group A; more blood vessels, significantly increased mature trabeculae, and the medullary cavity formation in group B; and gradually decreased blood vessels, the mature bone structure formation, and the re-opened medullary cavity in group C at 12 and 16 weeks. The immunohistochemical staining observation showed that the levels of CD105, CD34, and factor VIII were higher in group C than in groups A and B at different time points. The bone morphometry analysis showed that the trabecular volume increased gradually with time in 3 groups after operation; the trabecular volume in group C was significantly more than those in groups A and B at different time points (P < 0.05); and there was significant difference between groups A and B (P < 0.05) except the volume at 4 weeks (P > 0.05). The vascular image analysis showed that the vascular regenerative area ratio in group C was significantly higher than those in groups A and B at different time points (P < 0.05). The ink perfusion experiment showed that the osteogenic zone had sparse ink area with no obvious change in group B, while the osteogenic zone had more intensive ink area and reached the peak at 8 weeks, then decreased in group C.
Conclusion: The tissue engineered bone with pedicled fascial flap packing ARBM has the vascularization osteogenesis effect at early stage, but the effect disappears at late stage gradually when the membrane guided osteogenesis is main.
Download full-text PDF |
Source |
---|
Sci Adv
September 2025
Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.
Bioinspired network designs are widely exploited in biointegrated electronics and tissue engineering because of their high stretchability, imperfection insensitivity, high permeability, and biomimetic J-shaped stress-strain responses. However, the fabrication of three-dimensionally (3D) architected electronic devices with ordered constructions of network microstructures remains challenging. Here, we introduce the tensile buckling of stacked multilayer precursors as a unique route to 3D network materials with regularly distributed 3D microstructures.
View Article and Find Full Text PDFSci Adv
September 2025
School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Brain-computer interfaces (BCIs) enable direct communication between the brain and computers. However, their long-term functionality remains limited due to signal degradation caused by acute insertion trauma, chronic foreign body reaction (FBR), and biofouling at the device-tissue interface. To address these challenges, we introduce a multifunctional surface modification strategy called targeting-specific interaction and blocking nonspecific adhesion (TAB) coating for flexible fiber, achieving a synergistic integration of mechanical compliance and biochemical stability.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
Breastfeeding is essential for reducing infant morbidity and mortality, yet exclusive breastfeeding rates remain low, often because of insufficient milk production. The molecular causes of low milk production are not well understood. Fresh milk samples from 30 lactating individuals, classified by milk production levels across postpartum stages, were analyzed using genomic and microbiome techniques.
View Article and Find Full Text PDFSci Transl Med
September 2025
Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia.
Skin scars remain a substantial clinical challenge because of their impact on appearance and psychological well-being. Lysyl oxidases catalyze collagen cross-linking, a key factor in scar development. Here, we report a randomized, double-blind, placebo-controlled phase 1 study to assess the safety and tolerability of PXS-6302, a topical pan-lysyl oxidase inhibitor, in treating mature scars (ACTRN12621001545853).
View Article and Find Full Text PDFClin Cancer Res
September 2025
University of Michigan-Ann Arbor, Ann Arbor, MI, United States.
Purpose: Liposarcoma (LPS) is the most common soft tissue sarcoma. Well-differentiated LPS (WDLPS) can progress to dedifferentiated LPS (DDLPS), a more aggressive form with higher metastatic potential and poor response to existing therapies. Progress in understanding and treating LPS has been limited.
View Article and Find Full Text PDF