Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: In this study, we tested the antitumor activity of the dual phosphoinositide 3-kinase (PI3K)/mTOR inhibitor BEZ235 against gastric cancer in vitro and in vivo.

Experimental Design: Gastric cancer cell lines (N87, MKN45, and MKN28) were incubated with BEZ235 and assessed for cell viability, cell cycle, and PI3K/mTOR target inhibition. In vivo, athymic nude mice were inoculated with N87, MKN28, or MKN45 cells and treated daily with BEZ235. 3'-Deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) uptake was measured via small animal positron emission tomography (PET).

Results: In vitro, BEZ235 dose dependently decreased the cell viability of gastric cancer cell lines. The antiproliferative activity of BEZ235 was linked to a G(1) cell-cycle arrest. In vivo, BEZ235 treatment resulted in PI3K/mTOR target inhibition as shown by dephosphorylation of AKT and S6 protein in all xenograft models. However, BEZ235 treatment only inhibited tumor growth of N87 xenografts, whereas no antitumor effect was observed in the MKN28 and MKN45 xenograft models. Sensitivity to BEZ235 in vivo correlated with downregulation of the proliferation marker thymidine kinase 1. Accordingly, [(18)F]FLT uptake was only significantly reduced in the BEZ235-sensitive N87 xenograft model as measured by PET.

Conclusion: In conclusion, in vivo sensitivity of gastric cancer xenografts to BEZ235 did not correlate with in vitro antiproliferative activity or in vivo PI3K/mTOR target inhibition by BEZ235. In contrast, [(18)F]FLT uptake was linked to BEZ235 in vivo sensitivity. Noninvasive [(18)F]FLT PET imaging might qualify as a novel marker for optimizing future clinical testing of dual PI3K/mTOR inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-10-1659DOI Listing

Publication Analysis

Top Keywords

gastric cancer
20
pi3k/mtor target
16
target inhibition
16
[18f]flt uptake
16
bez235
12
bez235 vivo
12
cancer cell
8
cell lines
8
cell viability
8
mkn28 mkn45
8

Similar Publications

Expression analysis of C-FOS and XRCC3 Thr241Met polymorphism in gastric cancer.

Cell Mol Biol (Noisy-le-grand)

September 2025

Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, Iraq.

Gastric cancer is one of the causes of deaths related to cancer across the globe and both genetic and environmental factors are the most prominent. Causes of its pathogenesis. This paper researches the expression of the C-FOS gene.

View Article and Find Full Text PDF

Brucine Inhibits Gastric Cancer via Activation of Ferroptosis Through Regulating the NF-κB Signaling Pathway.

J Biochem Mol Toxicol

September 2025

Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.

Gastric cancer (GC) is the third leading cause of cancer mortality globally, often presenting with insidious symptoms that lead to late-stage diagnoses, underscoring the critical need for innovative diagnostic and therapeutic strategies. One such avenue is the exploration of ferroptosis, a regulated form of cell death implicated in various pathological conditions and malignancies. In this study, we demonstrate that brucine, an alkaloid derived from Strychnos nux-vomica, exerts significant antitumor effects on GC cells both in vitro and in vivo.

View Article and Find Full Text PDF

Gastric metastasis of breast cancer is rare, and clinical data on its treatment and prognosis are limited at present. Herein, we report a case of gastric metastasis arising from invasive ductal and mucinous carcinoma of the breast and review the literature. A 51-year-old woman was diagnosed with infiltrating and mucinous carcinoma of the right breast accompanied by ipsilateral axillary lymph node and subclavian lymph node metastases.

View Article and Find Full Text PDF