98%
921
2 minutes
20
The precedence effect (PE) is thought to be beneficial for proper localization and perception of sounds. The majority of recent physiological studies focus on the neural discharges correlated with PE in the inferior colliculus (IC). Pentobarbital anesthesia is widely used in physiological studies. However, little is known of the effect of pentobarbital on the discharge of neurons in PE. Neuronal responses in the IC from 23 male SD rats were recorded by standard extracellular recording techniques following presentation of 4 ms white noise bursts, presented from either or both of two loud speakers, at different interstimulus delays (ISDs). The neural responses were recorded for off-line analysis before or after intraperitoneal administration of pentobarbital at a loading or maintenance dose. Data were assessed by one-way repeated measures analysis of variance and pairwise comparisons. When the ipsilateral stimuli were leading, pentobarbital at a loading dose significantly increased normalized response to lagging stimuli during recovery from anesthesia. However, it was not the case when the contralateral stimuli were leading. At a maintenance dose, the normalized response to lagging stimuli were significantly reduced, independent of whether contralateral or ipsilateral stimuli were leading. These data show that pentobarbital have no effect on the normalized response of leading stimuli but can prolong the recovery time of lagging stimuli to paired sources produced PE illusions, which was gradually attenuated during recovery from anesthesia. Thus, extracellular recording immediately after administration of pentobarbital should be avoided in physiological studies of neural correlates of PE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2011.04.066 | DOI Listing |
Int J Pharm X
June 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).
View Article and Find Full Text PDFBiomater Biosyst
September 2025
ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Introduction: The airway mucosa plays a crucial role in protection and various physiological functions. Current methods for restoring airway mucosa, such as myocutaneous flaps or split skin grafts, create a stratified squamous layer that lacks the cilia and mucus-secreting glands of the native columnar-lined airway. This study examines the application of various injectable biopolymers as active molecules for a potential approach to regenerating laryngeal epithelial tissue.
View Article and Find Full Text PDFNatl Sci Rev
September 2025
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
Contactless human-machine interfaces (C-HMIs) are revolutionizing artificial intelligence (AI)-driven domains, yet face application limitations due to narrow sensing ranges, environmental fragility, and structural rigidity. To address these obstacles, we developed a flexible photonic C-HMI (Flex-PCI) using flexible visible-blind near-infrared organic photodetectors. In addition to its unprecedented performance across key metrics, including broad detection range (0.
View Article and Find Full Text PDFFront Neurosci
August 2025
Beijing Life Science Academy, Beijing, China.
Hypocretin, also known as orexin, is a hypothalamic neuropeptide that regulates essential physiological processes including arousal, energy metabolism, feeding behavior, and emotional states. Through widespread projections and two G-protein-coupled receptors-HCRT-1R and HCRT-2R-the hypocretin system exerts diverse modulatory effects across the central nervous system. The role of hypocretin in maintaining wakefulness is well established, particularly in narcolepsy type 1 (NT1), where loss of hypocretin neurons leads to excessive daytime sleepiness and cataplexy.
View Article and Find Full Text PDF