Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: DNA-intercalating drugs are planar molecules with several fused aromatic rings that form stacks between DNA base pairs, reducing the opening and unwinding of the double helix. Recently, interest on intercalating agents has moved in the search for new ligands to G-quadruplex structures.

Methods: The DNA binding properties of 4-aminoproline oligomers functionalized with one, two or three units of acridine and/or quindoline have been analyzed by competitive dialysis. A NMR/molecular dynamics study was performed on G-quadruplex telomeric sequence and the 4-aminoproline dimer carrying two quindolines. A model of the complex with the telomeric DNA quadruplex is described.

Results And Conclusions: A selectivity of quindoline 4-aminoproline oligomers for G-quadruplex and triplex structures was observed, especially for those quadruplex sequences found in telomeres and in the promoter regions of c-myc and bcl-2 oncogenes. In this model the quindoline dimer is stabilized by π-π stacking interactions between the aromatic rings of the ligand and the nucleobases of the telomeric sequence that are located above and below the molecule.

General Significance: The results of this work can be used for the design of new molecules with high affinity to telomeres which may have anticancer properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2011.04.013DOI Listing

Publication Analysis

Top Keywords

aromatic rings
8
4-aminoproline oligomers
8
telomeric sequence
8
acridine quindoline
4
quindoline oligomers
4
oligomers linked
4
4-aminoproline
4
linked 4-aminoproline
4
4-aminoproline backbone
4
backbone prefer
4

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

The gas-phase structures of dibenzo-24-crown-8 (DB24C8) and dinaphtho-24-crown-8 (DN24C8) complexes with divalent metal ions (Mg, Ca, Sr, Ba, Fe, Ni, and Zn) were investigated by cryogenic ion mobility-mass spectrometry (IM-MS) in combination with density functional theory calculations. Several complexes, particularly those of DN24C8, exhibited multiple coexisting conformers. DFT-optimized structures were classified based on the relative orientation of the two aromatic rings in the crown ether.

View Article and Find Full Text PDF

The design, synthesis, and characterization of a series of supramolecular receptors based on electron-deficient aromatic systems capable of engaging in anion-π interactions are reported. Receptors 1 and 3 combine an electron-poor aromatic scaffold with a cation-binding crown ether unit. Binding studies monitored by H NMR titrations in acetonitrile revealed that these receptors exhibit enhanced affinity for bromide anions in the presence of sodium cations, indicating cooperative ion-pair recognition.

View Article and Find Full Text PDF

Photodegradation of PET plastics produces persistent compounds that accumulate in sediments.

Mar Pollut Bull

September 2025

Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; Mass Spectrometry Based Converging Research Institute, Daegu 41566, Republic of Korea. Electronic address:

Polyethylene terephthalate (PET) is one of the most widely used plastics, particularly in packaging and textiles. Although PET is widely used in consumer products, only 10-28 % is recycled. Most PET waste is not properly managed.

View Article and Find Full Text PDF

Unlocking the Full Potential of SERS: Merging Direct and Indirect Approaches for Enhanced Analysis of Multiplex Plasticizer Analogs in Matrices.

Angew Chem Int Ed Engl

September 2025

Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.

Rapid and accurate identification of harmful plasticizer analogs in their native matrix is crucial for contaminant monitoring across industries. Surface-enhanced Raman scattering (SERS) shows promise for detecting structurally similar analogs but faces challenges like subtle receptor signal changes and distortion with weakly adsorbing plasticizer analytes. We address these limitations by integrating direct and indirect SERS to capture intrinsic Raman signals and receptor-analyte interactions, achieving 100% classification accuracy eight plasticizer analogs and multiplex quantification of three major plasticizers extracted from canola oil with < 5% predictive errors at a limit of detection (LOD) of 0.

View Article and Find Full Text PDF