98%
921
2 minutes
20
The objective of this study was to evaluate the performance of various allometric and in vitro-in vivo extrapolation (IVIVE) methodologies with and without plasma protein binding corrections for the prediction of human intravenous (i.v.) clearance (CL). The objective was also to evaluate the IVIVE prediction methods with animal data. Methodologies were selected from the literature. Pharmaceutical Research and Manufacturers of America member companies contributed blinded datasets from preclinical and clinical studies for 108 compounds, among which 19 drugs had i.v. clinical pharmacokinetics data and were used in the analysis. In vivo and in vitro preclinical data were used to predict CL by 29 different methods. For many compounds, in vivo data from only two species (generally rat and dog) were available and/or the required in vitro data were missing, which meant some methods could not be properly evaluated. In addition, 66 methods of predicting oral (p.o.) area under the curve (AUCp.o. ) were evaluated for 107 compounds using rational combinations of i.v. CL and bioavailability (F), and direct scaling of observed p.o. CL from preclinical species. Various statistical and outlier techniques were employed to assess the predictability of each method. Across methods, the maximum success rate in predicting human CL for the 19 drugs was 100%, 94%, and 78% of the compounds with predictions falling within 10-fold, threefold, and twofold error, respectively, of the observed CL. In general, in vivo methods performed slightly better than IVIVE methods (at least in terms of measures of correlation and global concordance), with the fu intercept method and two-species-based allometry (rat-dog) being the best performing methods. IVIVE methods using microsomes (incorporating both plasma and microsomal binding) and hepatocytes (not incorporating binding) resulted in 75% and 78%, respectively, of the predictions falling within twofold error. IVIVE methods using other combinations of binding assumptions were much less accurate. The results for prediction of AUCp.o. were consistent with i.v. CL. However, the greatest challenge to successful prediction of human p.o. CL is the estimate of F in human. Overall, the results of this initiative confirmed predictive performance of common methodologies used to predict human CL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.22552 | DOI Listing |
AAPS J
September 2025
Certara Predictive Technologies, Certara, Sheffield, UK.
In vitro permeation testing (IVPT) is commonly used to assess dermal drug delivery, yet its utility can be challenged by high variability and the need for large sample sizes to achieve sufficient statistical power. Dermal physiologically based pharmacokinetic (PBPK) models provide a mechanistic approach to better interpret IVPT results and to extrapolate in vitro to in vivo. In the present work, a dermal PBPK model for caffeine was developed using a bottom-up approach with minimal parameter optimization.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, IN.
Purpose: To develop a computational model that addresses limitations in current ocular irritation assessment methods, particularly regarding long-term effects, and recovery patterns following chemical exposure or trauma to the cornea.
Methods: V-Cornea is an agent-based computer simulation implemented in CompuCell3D that models corneal epithelial homeostasis and injury response. The model incorporates biologically-inspired rules governing cell behaviors (proliferation, differentiation, death) and key signaling pathways including Epidermal Growth Factor (EGF), translating cell-level behaviors to tissue-level outcomes ( to extrapolation, IVIVE).
Pharmaceutics
June 2025
Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA.
: Glucuronide recycling in the gut and liver profoundly affects the systemic and/or local exposure of drugs and their glucuronide metabolites, impacting both clinical efficacy and toxicity. This recycling also alters drug exposure in the colon, making it critical to establish local concentration for drugs targeting colon (e.g.
View Article and Find Full Text PDFPharmaceuticals (Basel)
July 2025
Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan.
: Hepatic clearance is important in determining clinical drug administration strategies. Achieving accurate hepatic clearance predictions through in vitro-to-in vivo extrapolation (IVIVE) relies on appropriate model selection, which is a critical step. Although numerous models have been developed to estimate drug dosage, some may fail to predict liver drug clearance owing to inappropriate hepatic clearance models during IVIVE.
View Article and Find Full Text PDFPharmaceutics
June 2025
PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
The characterization of a drug's ADME (absorption, distribution, metabolism, and excretion) profile is crucial for accurately determining its safety and efficacy. The rising prevalence of polypharmacy has significantly increased the risk of drug-drug interactions (DDIs). These interactions can lead to altered drug exposure, potentially compromising efficacy or increasing the risk of adverse drug reactions (ADRs), thereby posing significant clinical and regulatory concerns.
View Article and Find Full Text PDF