Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transforming growth factor-β (TGF-β) regulates all stages of mammary gland development, including the maintenance of tissue homeostasis and the suppression of tumorigenesis in mammary epithelial cells (MECs). Interestingly, mammary tumorigenesis converts TGF-β from a tumor suppressor to a tumor promoter through molecular mechanisms that remain incompletely understood. Changes in integrin signaling and tissue compliance promote the acquisition of malignant phenotypes in MECs in part through the activity of lysyl oxidase (LOX), which regulates desmoplastic reactions and metastasis. TGF-β also regulates the activities of tumor reactive stroma and MEC metastasis. We show here that TGF-β1 stimulated the synthesis and secretion of LOX from normal and malignant MECs in vitro and in mammary tumors produced in mice. The ability of TGF-β1 to activate Smad2/3 was unaffected by LOX inactivation in normal MECs, whereas the stimulation of p38 MAPK by TGF-β1 was blunted by inhibiting LOX activity in malignant MECs or by inducing the degradation of hydrogen peroxide in both cell types. Inactivating LOX activity impaired TGF-β1-mediated epithelial-mesenchymal transition and invasion in breast cancer cells. We further show that increasing extracellular matrix rigidity by the addition of type I collagen to three-dimensional organotypic cultures promoted the proliferation of malignant MECs, a cellular reaction that was abrogated by inhibiting the activities of TGF-β1 or LOX, and by degrading hydrogen peroxide. Our findings identify LOX as a potential mediator that couples mechanotransduction to oncogenic signaling by TGF-β1 and suggest that measures capable of inactivating LOX function may prove effective in diminishing breast cancer progression stimulated by TGF-β1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084617PMC
http://dx.doi.org/10.1593/neo.101086DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
malignant mecs
12
lysyl oxidase
8
transforming growth
8
growth factor-β
8
cancer cells
8
tgf-β regulates
8
lox
8
lox activity
8
hydrogen peroxide
8

Similar Publications

Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.

Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.

Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.

View Article and Find Full Text PDF

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation.

In Vitro Cell Dev Biol Anim

September 2025

Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.

S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.

View Article and Find Full Text PDF

Purpose: Breast cancer (BC) is the most frequent cancer among women and the second leading cause of central nervous system (CNS) metastases. While the epidemiology of CNS metastases from BC has been well described, little is known about the treatment patterns and outcomes of young women < 40 years of age with BC that is metastatic to the CNS.

Methods: In this retrospective analysis, we identified patients with metastatic breast cancer (MBC) to the CNS who were treated at the Sunnybrook Odette Cancer Center, Toronto, Canada between 2008 and 2018.

View Article and Find Full Text PDF