98%
921
2 minutes
20
A method has been developed for determining 3-mercaptohexan-1-ol (3-MH) in wine and grape juice using gas chromatography with conventional electron ionization (EI) mass spectrometry. The limit of quantitation of 40 ng/L was achieved with excellent precision using stable isotope dilution analysis (SIDA) combined with headspace solid-phase microextraction (SPME) of derivatized 3-MH. This method was used in combination with HPLC-MS/MS analysis of the individual diastereomers of 3-S-cysteinylhexan-1-ol (Cys-3-MH) and 3-S-glutathionylhexan-1-ol (Glut-3-MH), which are known precursors of the volatile thiol 3-MH. Commercial and small-lot winemaking trials were evaluated to determine the concentrations of precursors and free 3-MH at various stages of grape processing and winemaking. Five Sauvignon blanc clones were also assessed for precursors and free thiol during ripening, revealing the presence of 3-MH in the unfermented juices and a stark increase in precursor concentrations in the latter stage of ripening. Additionally, differences due to sample freezing and mode of juice preparation were revealed for the precursors, and a set of commercially available wines was analyzed to investigate the amounts of precursors and free 3-MH in Sauvignon blanc and other white wine varieties. There was seemingly no relationship between precursor concentrations in juice and 3-MH concentrations in wine. This was somewhat understandable, because the formation of precursors appears to be a dynamic process affected by a multitude of factors, beginning with grape ripening and continuing during vinification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf200116q | DOI Listing |
Int J Biol Macromol
September 2025
Nanotechnology Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot Street, 700483, Iași, Romania; Faculty of Chemistry, Al. I. Cuza University, 11- Carol I Bvd., 700506, Iasi, Romania. Electronic address:
This contribution discusses the design of bionanocomposites based on chitosan and MgAl layered double hydroxides (LDH) for cancer therapy. Compared to other studies, our approach was to pre-adsorb the metal chloride precursors of LDH on chitosan while the solution of metal precursors with and without H provided the acidic environment for polymer dissolution. The structure, morphology and chemical composition of the bionanocomposites were characterized by XRD, FTIR, TG, etc.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China; College of Biomass Science and Engineering, Sichuan Univer
Dialdehyde polysaccharides (DAPs) were prepared as tanning agents via periodate oxidation, intentionally omitting ethanol precipitation to maintain molecular weight polydispersity, thus optimizing tanning performance. However, the presence of formaldehyde in these DAPs compromised their environmental sustainability. This study systematically explored the impact of polysaccharide structures on formaldehyde formation in DAPs.
View Article and Find Full Text PDFLancet Rheumatol
September 2025
Leeds Institute for Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds, UK.
Vacuoles, E1 enzyme, X-linked, autoinflammatory, and somatic (VEXAS) syndrome is a newly identified disorder caused by an acquired monogenic somatic UBA1 gene mutation, affecting nuclear and cytoplasmic ubiquitination. This mutation triggers immune dysregulation, leading to diverse clinical and pathological features resembling inflammatory rheumatic diseases. Blood abnormalities stem from myeloid precursor dysfunction, presenting as elevated concentrations of inflammatory markers and cytokines, leukopenia, and macrocytosis.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping, 102249, China. Electronic address:
Carbon-based catalysts with free-standing structure are essential for rechargeable zinc-air battery as electrodes, which can avoid the side effects brought by organic binder. However, the current preparation methods still can be improved for faster preparation process and morphology control. In this study, we reported a fabrication strategy of self-standing carbon catalyst loaded with CoFe nanoparticles and carbon nanotube as air electrodes for liquid rechargeable zinc-air battery.
View Article and Find Full Text PDFSci Total Environ
September 2025
Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano 39100, Italy. Electronic address:
Nanoparticles (NPs) have emerged as transformative agents in agriculture, offering promising applications in nanofertilizers, nanopesticides, and soil amendments. However, significant knowledge gaps persist regarding the long-term impact of engineered NPs on soil health, including microbial networks and biogeochemical fluxes. Despite their potential to enhance nutrient use efficiency, promote crop resilience, and support sustainable farming, the interactions of NPs with soil matrices, especially their transformations, persistence, and ecological implications, are not fully explored.
View Article and Find Full Text PDF