98%
921
2 minutes
20
The biogeochemical mechanisms of Se exchange between water and sediments in two contrasting lentic environments were assessed through examination of Se speciation in the water column, porewater, and sediment. High-resolution (7 mm) vertical profiles of <0.45 μm Se species across the sediment-water interface demonstrate that the behavior of dissolved Se(VI), Se(IV), and organo-Se are closely linked to redox conditions as revealed by porewater profiles of redox-sensitive species (dissolved O2, NO3-, Fe, Mn, SO4(2-), and ΣH2S). At both sites Se(VI) is removed from solution in suboxic near-surface porewaters demonstrating that the sediments are serving as diffusive sinks for Se. X-ray absorption near edge spectroscopy (XANES) of sediments suggests that elemental Se and organo-Se represent the dominant sedimentary sinks for dissolved Se. Dissolved Se(IV) and organo-Se are released to porewaters in the near-surface sediments resulting in the diffusive transport of these species into the water column, where between-site differences in the depths of release can be linked to differences in redox zonation. The presence or absence of emergent vegetation is proposed to present a dominant control on sedimentary redox conditions as well as on the recycling and persistence of reduced Se species in bottom waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es103604p | DOI Listing |
Mar Environ Res
September 2025
Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China.
Coastal zones are critical for the biogeochemical cycling of dissolved organic matter (DOM) in marine ecosystems, yet the relative importance of photochemical and microbial degradation in DOM transformation remains poorly understood due to complex hydrodynamics, diverse sources, and human activities. Through 14-day laboratory incubations, we investigated DOM transformation mechanisms from three common marine coastal space uses: port, mariculture and inshore areas adjacent to Yantai City. DOM characterization was performed using fluorescence excitation-emission matrix parallel factor (EEM-PARAFAC) and UV-Vis spectroscopic indices.
View Article and Find Full Text PDFJ Environ Manage
September 2025
College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China. Electronic address:
Microbial communities in coastal sediments are vital for ecosystem stability and biogeochemical cycles. Disposal of wastewater treatment plant effluents into coastal environments might change the microbial community, further affecting ecosystem functioning. However, an important knowledge gap is how the different types and intensities of wastewater influence the microbial community assembly.
View Article and Find Full Text PDFAnnu Rev Microbiol
September 2025
4Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France.
Cyanobacteria played a pivotal role in shaping Earth's early history and today are key players in many ecosystems. As versatile and ubiquitous phototrophs, they are used as models for oxygenic photosynthesis, nitrogen fixation, circadian rhythms, symbiosis, and adaptations to harsh environments. Cyanobacterial genomes and metagenomes exhibit high levels of genomic diversity partly driven by gene flow within and across species.
View Article and Find Full Text PDFISME Commun
January 2025
Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwan.
Global salinization increasingly threatens ecosystem integrity and the regulation of biogeochemical cycles. Our study reveals novel insights into the microbial contributions to the organohalide decomposition in saline environments, demonstrating the unprecedented ability of organohalide-respiring bacteria and to completely dechlorinate trichloroethene to non-toxic ethene under hypersaline conditions (up to 31.3 g/L) in long-term operations.
View Article and Find Full Text PDFMar Environ Res
September 2025
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laborator
Sri Lanka is uniquely situated at the junction of the Bay of Bengal (BOB) and the Arabian Sea (AS), where phytoplankton community may be strongly influenced by ocean dynamical processes, particularly mesoscale eddies and the East Indian Coastal Current (EICC). Here, to explore these regulatory mechanisms, phytoplankton and physicochemical parameters were collected from the top 200 m water column in the eastern and southern seas of Sri Lanka during the winter monsoon. Results showed higher concentrations of nutrients and phytoplankton abundance within the regions affected by EICC and cyclonic eddy (CE) compared to anticyclonic eddy (ACE).
View Article and Find Full Text PDF