Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence.

Langmuir

Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics and Astronomy, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.

Published: March 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Titania is an important material in modern materials science, chemistry, and physics because of its special catalytic, electric, and optical properties. Here, we describe a novel method to synthesize colloidal particles with a crystalline titania, anatase core and an amorphous titania-shell structure. We demonstrate seeded growth of titania onto titania particles with accurate particle size tunability. The monodispersity is improved to such an extent so that colloidal crystallization of the grown microspheres becomes feasible. Furthermore, seeded growth provides separate manipulation of the core and shell. We tuned the refractive index of the amorphous shell between 1.55 and 2.3. In addition, the particles show luminescence when trace amounts of aminopropyl-triethoxysilane are incorporated into the titania matrix and are calcined at 450 °C. Our novel colloids may be useful for optical materials and technologies such as photonic crystals and optical trapping.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la103717mDOI Listing

Publication Analysis

Top Keywords

seeded growth
12
growth titania
8
titania
6
titania colloids
4
colloids refractive
4
refractive tunability
4
tunability fluorophore-free
4
fluorophore-free luminescence
4
luminescence titania
4
titania material
4

Similar Publications

This comprehensive review examines the versatile applications and effects of Moringa oleifera across multiple fish species in aquaculture systems amid growing challenges of rising feed costs and antimicrobial resistance. M. oleifera, commonly called the Miracle tree, contains an exceptional nutritional profile with high protein content (22.

View Article and Find Full Text PDF

Plasma membrane maize Gγ protein MGG4 positively regulates seed size mainly through influencing kernel width.

Plant Cell Rep

September 2025

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.

Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF

Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.

View Article and Find Full Text PDF

The present study aimed to explore the potential of Indian mustard ( L.) for phytoremediation of soil contaminated with ciprofloxacin. The antibiotic ciprofloxacin was selected due to its rapidly increasing presence in soil.

View Article and Find Full Text PDF