98%
921
2 minutes
20
Introduction: Diffuse intrinsic pontine gliomas (DIPG) have a poor prognosis: the median survival rate is less than one year. Radiotherapy is the only effective treatment affording an overall survival of 6 - 9 months. So far, no improvement has been achieved with the addition of single/poly-chemotherapy regimens. An urgent need is to advance in this field, from both the biological and the clinical points of view.
Areas Covered: Among the few studies providing biological information on DIPG, Gilbertson's group demonstrated a significant increase in EGFR expression. The activity of nimotuzumab, a humanized anti-EGFR monoclonal antibody, was therefore studied within a Phase II trial in 47 relapsing pediatric patients with DIPG and high-grade gliomas, showing an interesting, persistent response, especially in the first group treated. A multicenter exploratory study combining nimotuzumab and radiotherapy showed disease control and an overall patient survival similar to previous experiences along with an improvement in the quality of patient survival and no severe side effects.
Expert Opinion: We recommend considering this combination in the armamentarium against DIPG. It might be improved by adding other target drugs/low-toxicity chemotherapy regimens with a synergistic effect with the anti-EGFR component.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/14712598.2011.546341 | DOI Listing |
ACS Appl Bio Mater
September 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.
View Article and Find Full Text PDFUltrason Sonochem
September 2025
College of Science, Inner Mongolia University of Technology, Hohhot 010051, China.
In this study, the systematic investigation focused on how varying power levels of ultrasonic (US) pretreatment, when integrated with electrohydrodynamic (EHD) drying, influence the physicochemical properties of yam. Yam samples were subjected to ultrasonic pretreatment at 30 °C for 30 min using power levels of 0 W (Control), 150 W, 180 W, 210 W, 240 W, and 270 W, respectively, followed by drying in an EHD system. During the drying process, a range of metrics were measured, including moisture content, average drying rate, color change, as well as rehydration capacity.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China.
Alkaline zinc-iron flow batteries (AZIFBs) are one of the promising aqueous redox chemistries for large-scale energy storage due to their intrinsic safety and low cost. However, the energy efficiency (EE) and power density of batteries with low-cost polybenzimidazole (PBI) membranes are still limited due to the relatively poor ionic conductivity of PBI in an alkaline medium. Here, this study proposes a novel chemical approach for regulating the chemical environment of the PBI membrane.
View Article and Find Full Text PDFInorg Chem
September 2025
Laboratoire de Chimie Physique Matière et Rayonnement (LCPMR), CNRS UMR 7614, Sorbonne Université (SU), 4 place Jussieu, Paris 75005, France.
The one-photon KV X-ray photoelectron spectra of Na and its hydrated clusters [Na(HO)] ( = 1-6) are dominated by the unusual 1s → 1s3s transition. KV spectroscopy also reveals a pronounced redistribution of the 1s → 1s3p transition cross sections, directly correlated with hydration number and molecular arrangement. Its intrinsic two-step nature, involving simultaneous core ionization and core excitation, enables detailed investigation of solvation-induced electronic structure changes, including dipole-forbidden excitations, core-valence charge transfer, and subtle 1s → V energy shifts.
View Article and Find Full Text PDFJ Mol Model
September 2025
Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna, Bihar, India.
Context: This study investigates the radiation tolerance of a SiGe source vertical tunnel field effect transistor (VTFET) under heavy ion-induced single event effects (SEEs). Single event effects (SEEs) occur when high-energy particles interact with semiconductor devices, leading to unintended behavior. The effect of high energy ions on the VTFET is examined for various linear energy transfer (LET) values and at multiple ion hit locations.
View Article and Find Full Text PDF