Photochromic alkynes as versatile building blocks for metal alkynyl systems: design, synthesis, and photochromic studies of diarylethene-containing platinum(II) phosphine alkynyl complexes.

Inorg Chem

Institute of Molecular Functional Materials, Department of Chemistry, and HKU-CAS Joint Laboratory of New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China.

Published: January 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The synthesis of newly designed photochromic dithienylethene-containing ethynylthiophene and ethynylthieno[3,2-b]thiophene has been described, and their incorporation as versatile ligands into the platinum(II) phosphine system was demonstrated. All platinum(II) complexes have been successfully characterized by (1)H and (31)P NMR spectroscopies, positive fast atom bombardment (FAB) mass spectrometry, as well as elemental analysis. One of the complexes has been characterized by X-ray crystallography. Their photophysical, photochromic, and electrochemical properties have been studied. Upon photoexcitation, all the photochromic diarylethene-containing alkynes and platinum(II) complexes exhibited reversible photochromism. The thermal bleaching kinetic of complex 6 was studied in toluene at 298 and 313 K. Complexes 1, 3, and 4, which contained the labile chloro- ligand, represent a new class of versatile building blocks for photoswitchable functional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic101298cDOI Listing

Publication Analysis

Top Keywords

versatile building
8
building blocks
8
platinumii phosphine
8
platinumii complexes
8
complexes characterized
8
photochromic
5
complexes
5
photochromic alkynes
4
alkynes versatile
4
blocks metal
4

Similar Publications

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful analytical technique with a wide range of applications. To support the analysis of diverse and complex samples, various NMR tools and accessories have been created. Three-dimensional (3D) printing is an underutilized production method for NMR hardware, mainly due to the lack of H NMR background-free resins.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) exhibit outstanding structural tunability, clearly defined ion pathways, and remarkable thermal/chemical stabilities, rendering them highly promising candidates for applications in solid-state electrolytes. However, it remains a challenge to develop a versatile method to incorporate both ionic groups and electron-withdrawing units into a single framework for effectively improving the lithium-ion conductivity. Herein, a series of novel [3+3] defective COFs is successfully synthesized featuring active amine/aldehyde anchoring sites for subsequent post-modification, and regulates the ion conductivity through elaborately tuning the anionic/cationic groups and weak/strong electron-withdrawing units.

View Article and Find Full Text PDF

Cyclic peptides (CPs) are versatile building blocks whose conformational constraints foster ordered supramolecular architectures with potential in biomedicine, nanoelectronics, and catalysis. Herein, we report the development of biomimetic antifreeze materials by conjugating CPs bearing ice-binding residues to 4-arm polyethylene glycol (PEG) via click chemistry. The concentration-dependent self-assembly of these CP-PEG conjugates induces programmable morphological transitions, forming nanotube networks above the critical aggregation concentration (CAC) and two-dimensional nanosheet networks near the CAC.

View Article and Find Full Text PDF

Branched DNA for disease diagnosis and therapy.

Adv Drug Deliv Rev

September 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China; Shanghai Key Laboratory of Cancer System Regulation and Clinical Translation, Jiading District Central Hospital, Renji Hospital J

DNA exhibits remarkable versatility, which is attributed to its inherent molecular recognition capabilities, programmable sequences, and excellent biocompatibility. Among its various topological forms, branched DNA (bDNA), including Y-shaped DNA (Y-DNA), X-shaped DNA (X-DNA), etc., stands out as a fundamental building block for fabricating functional DNA-based materials and has demonstrated great promise across diverse applications in recent years.

View Article and Find Full Text PDF

2-Alkylindoles are privileged motifs that serve as versatile intermediates and building blocks in synthetic and medicinal chemistry. Herein, we report a photoinduced, EDA-complex-enabled C2-benzylic C(sp)-H alkylation of indoles with bromides through radical cross-coupling. This developed protocol provides facile access to 2-alkylindoles from structurally varied 2-methylindoles and bromides under mild reaction conditions with simple operation.

View Article and Find Full Text PDF