98%
921
2 minutes
20
We present a quasielastic neutron scattering (QENS) study of single-particle dynamics in pure water, measured at temperatures between 256 and 293 K along an isobaric path at 200 MPa. A thorough analysis of the spectral line shapes reveals a departure from simple models of continuous or jump diffusion, with such an effect becoming stronger at lower temperatures. We show that such a diverging trend of dynamical quantities upon cooling closely resembles the divergent (anomalous) compressibility observed in water by small-angle diffraction. Such an analogy suggests an interesting interplay between single-particle diffusion and structural arrangements in liquid water, both bearing witness of the well-known water anomalies. In particular, a fit of dynamical parameters by a Vogel-Tammann-Fulcher law provides a critical temperature of about 220 K, interestingly close to the hypothesized position of the second critical point of water and to the so-called Widom line.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp1073768 | DOI Listing |
PLoS Med
September 2025
University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.
Background: Oral emtricitabine/tenofovir disoproxil fumarate (F/TDF) preexposure prophylaxis (PrEP) effectiveness against HIV acquisition highly depends on adherence. For men who have sex with men, a dosing study in the United States (US) population defined clinically meaningful tenofovir diphosphate (TFV-DP) thresholds in dried blood spots (DBS) based on the rounded 25th percentile for 2, 4, and 7 doses/week as 350, 700, and 1,250 fmol/punch. However, divergent efficacy results in the first generation randomized clinical trials of F/TDF PrEP among African women led to several hypotheses to question whether the pharmacology and adherence requirement for oral F/TDF PrEP may be different in cisgender women compared to what is already established for men.
View Article and Find Full Text PDFAnal Methods
September 2025
Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China.
A method for determination of ten kinds of sweeteners in soybean products by multi-plug filtration cleanup (-PFC) combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. The sample was extracted with acetonitrile (containing 1% formic acid), degreased by using -hexane liquid-liquid extraction and purified by solid phase extraction using an -PFC column (Oasis PRiME HLB). The analytes were separated by using a Waters ACQUITY UPLC® BEH C (2.
View Article and Find Full Text PDFJ Fluoresc
September 2025
School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, P.R. China.
The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.
View Article and Find Full Text PDFArch Microbiol
September 2025
Department of Biological Sciences, Wichita State University, 26, 1845 Fairmount, Wichita, KS, 67260, USA.
Freezing point depression due to high salt concentration is crucial for liquid water to exist on cold worlds, expanding special regions where habitats are plausible. Determination of the growth tolerances of terrestrial microbes in analog systems impacts planetary protection protocols aimed at preventing interference with life detection missions or potential native ecosystems on celestial bodies. We measured the salinity tolerances of 18 salinotolerant bacteria (Bacillus, Halomonas, Marinococcus, Nesterenkonia, Planococcus, Salibacillus, and Terribacillus).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.
Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.
View Article and Find Full Text PDF