Molecular characterization and expression patterns of Lbx1 in porcine skeletal muscle.

Mol Biol Rep

Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Published: August 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ladybird-like genes were recently identified in mammals. The first member characterized, Lbx1, is expressed in developing skeletal muscle and the nervous system. However, little is known about the porcine Lbx1 gene. In the present study, we cloned and characterized Lbx1 from porcine muscle. RT-PCR analyses showed that Lbx1 was highly expressed in porcine skeletal muscle tissues. And we provide the first evidence that Lbx1 has a certain regulated expression pattern during the postnatal period of the porcine skeletal muscle development. Lbx1 gene expressed at higher levels in biceps femoris muscles compared with masseter, semitendinosus and longissimus dorsi muscles in Meishan pigs. Phylogenetic tree was constructed by aligning the amino acid sequences of different species. Moreover, single nucleotide polymorphism (SNP) scanning in the Lbx1 genomic fragment identified two mutations, g.752A>G and g.-1559C>G. Association analysis in our experimental pig populations showed that the mutation of g.752A>G was significantly associated with loin muscle area (P<0.05) and internal fat rate (P<0.05). Our results suggest that the Lbx1 gene might be a candidate gene of carcass traits and provide useful information for further studies on its roles in porcine skeletal muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-010-0516-1DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
porcine skeletal
12
lbx1
8
lbx1 porcine
8
characterized lbx1
8
lbx1 gene
8
muscle
6
porcine
5
molecular characterization
4
characterization expression
4

Similar Publications

Alterations in skeletal muscle morphology and composition are critical factors in cerebral palsy (CP), including changes in passive stiffness and in belly and fascicle lengths. In this study, we quantified the relative contributions of muscle and tendon to passive stiffness across the ankle range of motion in individuals with CP and typically developing (TD) peers. We also investigated morphological factors underlying increased muscle stiffness.

View Article and Find Full Text PDF

Protective Role of Apelin in a Mouse Model of Post-Intensive Care Syndrome.

Am J Respir Cell Mol Biol

September 2025

University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada.

Post-Intensive Care Syndrome (PICS) is a serious condition involving physical weakness, depression, and cognitive impairment that develop during or after an intensive care unit (ICU) stay, often resulting in long-term declines in quality of life. Patients with acute respiratory distress syndrome (ARDS) and severe COVID-19 are at particularly high risk, yet the molecular mechanisms underlying PICS remain poorly understood. Here, we identify impaired Apelin-APJ signaling as a potential contributor to PICS pathogenesis via disruption of inter-organ homeostasis.

View Article and Find Full Text PDF

Purpose: Develop a musculoskeletal-environment interaction model to reconstruct the dynamic-interaction process in skiing.

Methods: This study established a skier-ski-snow interaction (SSSI) model that integrated a 3D full-body musculoskeletal model, a flexible ski model, a ski boot model, a ski-snow contact model, and an air resistance model. An experimental method was developed to collect kinematic and kinetic data using IMUs, GPS, and plantar pressure measurement insoles, which were cost-effective and capable of capturing motion in large-scale field conditions.

View Article and Find Full Text PDF

Background: Single-leg stance requires pelvic stability, largely supported by the hip abductors. Differences in hip abductor activation between sexes and individuals with or without musculoskeletal conditions may relate to abductor weakness. However, the relationship between hip abduction strength and muscle activation during stance, and whether this is moderated by sex, remains unclear.

View Article and Find Full Text PDF

Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.

View Article and Find Full Text PDF