Quantitative analysis of acid-base disorders in patients with chronic respiratory failure in stable or unstable respiratory condition.

Respir Care

Service de Réanimation Médicale et d'Assistance Respiratoire, Hôpital de la Croix Rousse, 103 Grande Rue de la Croix Rousse, 69004 Lyon, France.

Published: November 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The Stewart approach theorizes that plasma pH depends on P(aCO₂), the strong ion difference, and the plasma total concentration of non-volatile weak acids (A(tot)). The conventional approach measures standardized base excess, bicarbonate (HCO₃⁻), and the anion gap.

Objective: To describe acid-base disorders with the Stewart approach and the conventional approach in patients with chronic respiratory failure.

Methods: This was an observational prospective study in a medical intensive care unit and a pneumology ward of a university hospital. There were 128 patients included in the study, of which 14 had more than one admission, resulting in 145 admissions. These were allocated to 4 groups: stable respiratory condition and elevated HCO₃⁻ (Group 1, n = 23), stable respiratory condition and non-elevated HCO₃⁻ (Group 2, n = 41), unstable respiratory condition and elevated HCO₃⁻ (Group 3, n = 44), and unstable respiratory condition and non-elevated HCO₃⁻ (Group 4, n = 37). Elevated HCO₃⁻ was defined as ≥ 3 standard deviations higher than the mean value we found in 8 healthy volunteers. Measurements were taken on admission.

Results: In groups 1, 2, 3, and 4, the respective mean ± SD values were: HCO₃⁻ 33 ± 3 mM, 26 ± 3 mM, 37 ± 4 mM, and 27 ± 3 mM (P < .001); strong ion difference 45 ± 3 mM, 38 ± 4 mM, 46 ± 4 mM, and 36 ± 4 mM (P < .001); and A(tot) 12 ± 1 mM, 12 ± 1 mM, 10 ± 1 mM, 10 ± 2 mM (P < .001). Non-respiratory disorders related to high strong ion difference were observed in 12% of patients with elevated HCO₃⁻, and in none of those with non-elevated HCO₃⁻ (P = .003). Non-respiratory disorders related to low strong ion difference were observed in 9% of patients with non-elevated HCO₃⁻, and in none of those with elevated HCO₃⁻ (P = .02). Hypoalbuminemia was common, especially in unstable patients (group 3, 66%; group 4, 65%). Normal standardized base excess (16%), HCO₃⁻ (28%), and anion gap (30%) values were common. The Stewart approach detected high effective strong ion difference in 13% of normal standardized base excess, and in 20% of normal anion gap corrected for albuminemia, and low effective strong ion difference in 22% of non-elevated HCO₃⁻.

Conclusions: In patients with chronic respiratory failure the acid-base pattern is complex, metabolic alkalosis is present in some patients with elevated HCO₃⁻, and metabolic acidosis is present in some with non-elevated HCO₃⁻. The diagnostic performance of the Stewart approach was better than that of the conventional approach, even when corrected anion gap was taken into account.

Download full-text PDF

Source

Publication Analysis

Top Keywords

strong ion
24
ion difference
24
elevated hco₃⁻
24
respiratory condition
20
non-elevated hco₃⁻
20
stewart approach
16
hco₃⁻ group
16
hco₃⁻
14
patients chronic
12
chronic respiratory
12

Similar Publications

Construction of chitosan/wurtzite multiple sites on mesoporous halloysite and selective removal of Al(III) from rare earth ions solution: Microcalorimetry investigation.

Int J Biol Macromol

September 2025

School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China; School of Resources and Civil Engineering, GanNan University of Science and Technology, Ganzhou, 341000, China.

Herein, organic/inorganic multiple adsorption sites were constructed on halloysite to intensify the selective adsorption performance of the adsorbent for Al(III) in rare earth solutions. The adsorption heat behavior and thermodynamics of the composite for different ion systems were investigated using microcalorimetry. The results showed that chitosan formed a mesoporous membrane on the acid-treated calcined halloysite (HalH) substrate through a strong electron interaction between the nitrogen atom of the amino group and the oxygen atom of SiO structure on HalH.

View Article and Find Full Text PDF

Lignin, a negatively charged, three-dimensional natural biopolymer, serves as an ideal support for metal catalysts due to its abundant functional groups and tunable chemical properties, which enable strong metal coordination and effective immobilization. Herein, we demonstrate a lignin-mediated Co/O co-doped AgS, symbolized as L-AgCoOS, bimetal oxysulfide catalyst via a facile hydrolysis method for the efficient reduction of toxic phenolic compounds (4-nitrophenol, 4-NP), organic dyes (methyl orange (MO), methylene blue (MB), rhodamine B (RhB), and heavy metal ions Cr(VI)) under dark conditions. Lignin, used to immobilize catalysts, also contributes to increasing the number of active catalytic sites and enhancing catalytic activity.

View Article and Find Full Text PDF

Analysis of the toxicity and mechanisms of osteoporosis caused by cigarette toxicants using network toxicology and molecular docking techniques.

Sci Total Environ

September 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China. Electronic address:

The objective of this research was to use a network toxicology approach to examine the possible toxicity of the cigarette toxicants nicotine and coal tar that cause osteoporosis (OP) as well as its molecular processes. We determined the primary chemical structures and 128 targets of action of tar and nicotine using the Swiss Target Prediction, NP-MRD, and PubChem databases. We discovered that genes including DNAJB1, CCDC8, LINC00888, ATP6V1G1, MPV17L2, PPCS, and TACC1 had a disease prognostic guiding value by LASSO analysis and differential analysis of GEO microarray data.

View Article and Find Full Text PDF

Decoding the functional roles of multimetallic constituents in high-entropy prussian blue analogues for sodium-ion batteries.

J Colloid Interface Sci

August 2025

School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. Electronic address:

Prussian blue analogues (PBAs) have emerged as promising cathode materials for sodium-ion batteries (SIBs) due to their low cost, simple preparation, and high theoretical specific capacity. The integration of high-entropy concepts with framework-structured PBAs has pioneered a new pathway for performance optimization in SIBs cathodes. However, most scholars have only studied the five elements constituting high entropy as a whole, while challenges such as the role of each element and optimization of the proportions among constituent elements remain unresolved.

View Article and Find Full Text PDF

HO and CO Sorption in Ion-Exchange Sorbents: Distinct Interactions in Amine Versus Quaternary Ammonium Materials.

ACS Appl Mater Interfaces

September 2025

The Steve Sanghi College of Engineering, Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona 86011, United States.

This study investigates the HO and CO sorption behavior of two chemically distinct polystyrene-divinylbenzene-based ion exchange sorbents: a primary amine and a permanently charged strong base quaternary ammonium (QA) group with (bi)carbonate counter anions. We compare their distinct interactions with HO and CO through simultaneous thermal gravimetric, calorimetric, gas analysis, and molecular modeling approaches to evaluate their performance for dilute CO separations like direct air capture. Thermal and hybrid (heat + low-temperature hydration) desorption experiments demonstrate that the QA-based sorbent binds both water and CO more strongly than the amine counterparts but undergoes degradation at moderate temperatures, limiting its compatibility with thermal swing regeneration.

View Article and Find Full Text PDF