Regulation of NADPH oxidase activity in phagocytes: relationship between FAD/NADPH binding and oxidase complex assembly.

J Biol Chem

From the Chronic Granulomatous Disease Diagnosis and Research Center, University Hospital Grenoble, Therex-TIMC/Imag UMR CNRS 5525, Université Joseph Fourier, 38043 Grenoble Cedex 9. Electronic address:

Published: October 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The X(+)-linked chronic granulomatous disease (X(+)-CGD) variants are natural mutants characterized by defective NADPH oxidase activity but with normal Nox2 expression. According to the three-dimensional model of the cytosolic Nox2 domain, most of the X(+)-CGD mutations are located in/or close to the FAD/NADPH binding regions. A structure/function study of this domain was conducted in X(+)-CGD PLB-985 cells exactly mimicking 10 human variants: T341K, C369R, G408E, G408R, P415H, P415L, Δ507QKT509-HIWAinsert, C537R, L546P, and E568K. Diaphorase activity is defective in all these mutants. NADPH oxidase assembly is normal for P415H/P415L and T341K mutants where mutation occurs in the consensus sequences of NADPH- and FAD-binding sites, respectively. This is in accordance with their buried position in the three-dimensional model of the cytosolic Nox2 domain. FAD incorporation is abolished only in the T341K mutant explaining its absence of diaphorase activity. This demonstrates that NADPH oxidase assembly can occur without FAD incorporation. In addition, a defect of NADPH binding is a plausible explanation for the diaphorase activity inhibition in the P415H, P415L, and C537R mutants. In contrast, Cys-369, Gly-408, Leu-546, and Glu-568 are essential for NADPH oxidase complex assembly. However, according to their position in the three-dimensional model of the cytosolic domain of Nox2, only Cys-369 could be in direct contact with cytosolic factors during oxidase assembly. In addition, the defect in oxidase assembly observed in the C369R, G408E, G408R, and E568K mutants correlates with the lack of FAD incorporation. Thus, the NADPH oxidase assembly process and FAD incorporation are closely related events essential for the diaphorase activity of Nox2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963400PMC
http://dx.doi.org/10.1074/jbc.M110.151555DOI Listing

Publication Analysis

Top Keywords

nadph oxidase
24
oxidase assembly
20
diaphorase activity
16
fad incorporation
16
three-dimensional model
12
model cytosolic
12
oxidase
9
oxidase activity
8
fad/nadph binding
8
oxidase complex
8

Similar Publications

Clinical, biochemical, and genetic characterization of Lebanese patients with chronic granulomatous disease due to NCF2 pathogenic variants.

Clin Immunol

September 2025

Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center

Chronic Granulomatous Disease (CGD) is caused by mutations in the NADPH oxidase complex that impair the ability of phagocytes to eliminate injested pathogens. As a result, patients with CGD suffer from recurrent infections and chronic inflammation. We report the clinical, biochemical, and genetic basis of the disease in 17 CGD patients from Lebanon.

View Article and Find Full Text PDF

Lignin deposition in stone cells is critical for the quality of pear fruit. NADPH oxidase (RBOH), a membrane-bound respiratory burst oxidase homolog, enzymatically generates reactive oxygen species (ROS) to critically regulate diverse physiological processes in plants. Nevertheless, the genetic mechanisms that govern RBOH-regulated lignin biosynthesis in the context of stone cell formation remain inadequately elucidated.

View Article and Find Full Text PDF

Cognitive impairments are frequently observed in cancer survivors who received chemotherapy based on doxorubicin (DOX), attributable to oxidative stress, neuroinflammation, and the apoptotic effect of DOX. Dapagliflozin (DAPA) has gained significant attention attributable to its powerful anti-inflammatory, antioxidant, and anti-apoptotic characteristics. The present investigation seeks to assess the possible neuroprotective properties of DAPA in alleviating neurodegeneration and cognitive dysfunction caused by DOX.

View Article and Find Full Text PDF

The leukocyte NADPH oxidase 2 (NOX2) is an important regulator of inflammatory responses, independent of its antimicrobial activity. Inactivating mutations in NOX2 cause chronic granulomatous disease (CGD), a severe immunodeficiency associated with recurrent infections and dysregulated neutrophilic inflammation. Recurrent oral ulcers, stomatitis, gingivitis, and other inflammatory issues affecting the oral mucosa have been observed in patients with CGD; however, the underlying mechanisms are not known.

View Article and Find Full Text PDF

CPK12 decodes effector-triggered calcium signaling and phosphorylates PIP2;1 to facilitate apoplastic ROS transport into the cytoplasm in Arabidopsis.

Mol Plant

September 2025

Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China. Electronic address:

Effector-triggered immunity (ETI) in plants is mediated by intracellular nucleotide-binding leucine-rich repeat receptors (NLRs), which converge on calcium (Ca) signaling pathways. However, how NLR-induced Ca signals initiate downstream immune responses, such as enhancing reactive oxygen species (ROS) signaling, remains largely unclear. In this study, we identified a calcium-dependent protein kinase (CPK) that regulates sustained ETI-ROS signaling.

View Article and Find Full Text PDF