TCR-dependent translational control of GATA-3 enhances Th2 differentiation.

J Immunol

David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences and Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.

Published: September 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The differentiation of CD4(+) T cells into the Th2 subset is controlled by the transcription factor GATA-3. GATA-3 is both necessary and sufficient for Th2 differentiation and works through the induction of chromatin remodeling at the Th2 effector cytokine loci. We show in this study that IL-4 stimulation induces GATA-3 mRNA upregulation, but the level of GATA-3 protein induced is insufficient for Th2 differentiation. The levels of GATA-3 protein and Th2 differentiation are enhanced by concomitant TCR signaling through the PI3K/mammalian target of rapamycin pathway. The PI3K-mediated increase in GATA-3 protein occurs without increasing the GATA-3 mRNA level. Rather, TCR signaling through PI3K specifically enhances the translation rate of GATA-3 without affecting the protein stability. Importantly, this role of TCR signaling is independent of the effects of TCR signaling in T cell survival and expansion. Thus, TCR signaling through PI3K may play a critical role in Th2 differentiation by the specific enhancement of GATA-3 translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993005PMC
http://dx.doi.org/10.4049/jimmunol.0902544DOI Listing

Publication Analysis

Top Keywords

th2 differentiation
20
tcr signaling
20
gata-3 protein
16
gata-3
10
gata-3 mrna
8
signaling pi3k
8
th2
7
differentiation
6
tcr
5
signaling
5

Similar Publications

The Brucella abortus A19 attenuated live vaccine poses potential infection risks during practical applications and interferes with serological diagnostics, thereby affecting quarantine measures and the establishment of disease-free zones. Consequently, this study aimed to reduce its potential virulence, enhance its protective efficacy and differentiate it from wild-type strains by knocking out the immunosuppressive virulence gene btpB in the A19 strain. Using homologous recombination, we successfully obtained the A19ΔBtpB deletion strain.

View Article and Find Full Text PDF

Role of Splenocytes on T Cells and Its Cytokine Network in Rheumatoid Arthritis.

Crit Rev Immunol

September 2025

Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.

Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a common neurodegenerative disorder of the central nervous system. Neuropathic pain (NP) is a type of symptom that is often overlooked but significantly affects the quality of life of patients. Its etiology is complex, and the specific molecular mechanism is still unclear.

View Article and Find Full Text PDF

Uveitis is an inflammatory eye disease, and Longdan Xiegan Decoction (LXD) has been used to treat uveitis. However, the underlying mechanisms have not fully been addressed. The present study aimed to provide new insights into LXD ameliorating inflammatory response of experimental autoimmune uveitis (EAU) and regulating T helper (Th) cell differentiation via the interaction between microRNA (miRNA) and mRNA.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic dermatological disorder characterized by intense pruritus and eczematous lesions. Repeated topical application of 2,4-dinitrofluorobenzene (DNFB) in NC/Nga mice produces AD-like clinical symptoms that closely resemble human AD. N-Acetyl-L-Alanine (L-NAA), a derivative of L-Alanine, has unknown biological and physiological effects on cutaneous tissue.

View Article and Find Full Text PDF