Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

chipD is a web server that facilitates design of DNA oligonucleotide probes for high-density tiling arrays, which can be used in a number of genomic applications such as ChIP-chip or gene-expression profiling. The server implements a probe selection algorithm that takes as an input, in addition to the target sequences, a set of parameters that allow probe design to be tailored to specific applications, protocols or the array manufacturer's requirements. The algorithm optimizes probes to meet three objectives: (i) probes should be specific; (ii) probes should have similar thermodynamic properties; and (iii) the target sequence coverage should be homogeneous and avoid significant gaps. The output provides in a text format, the list of probe sequences with their genomic locations, targeted strands and hybridization characteristics. chipD has been used successfully to design tiling arrays for bacteria and yeast. chipD is available at http://chipd.uwbacter.org/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896189PMC
http://dx.doi.org/10.1093/nar/gkq517DOI Listing

Publication Analysis

Top Keywords

tiling arrays
12
chipd web
8
oligonucleotide probes
8
probes high-density
8
high-density tiling
8
probes
5
chipd
4
web tool
4
design
4
tool design
4

Similar Publications

Design principles for construction of DNA-based nanostructures.

Adv Drug Deliv Rev

September 2025

Department of Chemistry, Purdue University, West Lafayette 47907, IN 47907, USA. Electronic address:

DNA nanotechnology, a cutting-edge field that constructs sophisticated DNA-based nanostructures by harnessing the unparalleled programmability of DNA, has evolved into a powerful tool for applications in therapy, biosensing, logic computation, and more. This review outlines the fundamental strategies for constructing DNA nanostructures, beginning with the design of basic building blocks such as small, symmetric tiles (e.g.

View Article and Find Full Text PDF

Background: Foot-and-mouth disease virus (FMDV) is capable of causing explosive outbreaks among domestic and wild cloven-hoofed animals. Genomic characterisation of FMDV is a crucial component of disease control enabling accurate tracing of disease outbreaks to be undertaken. Nanopore sequencing is an affordable and accessible form of high-throughput sequencing (HTS) technology.

View Article and Find Full Text PDF

With the growth of field-programmable gate array (FPGA) hardware resources, streaming DCNN accelerators leverage interconvolutional-layer parallelism to enhance throughput. In existing streaming accelerators, convolution nodes typically adopt layer- or column-based tiling methods, where the tiled input feature map (Ifmap) encompasses all input channels. This approach facilitates the comprehensive calculation of the output feature map (Ofmap) and maximizes interlayer parallelism.

View Article and Find Full Text PDF

Fundamental investigations of ice nucleation, a key process in fields from environmental science to cryobiology, require model systems with chemical and physical structures that are well defined and easily varied. DNA origami is an especially promising model because of the exquisite control that it offers over the physical geometry of the nucleating agent at the nano-scale. Here we compare ice nucleation by solutions of a rectangular DNA origami tile, formed by annealing a 2.

View Article and Find Full Text PDF

Morphological anisotropies and nonlinear mechanical properties shape the kinematic agility of organisms and engineered structures. Tissues, such as skin, act as biological metamaterials whose internal structures, such as packed collagen fibers, produce nonlinear and directional responses. Similarly, hierarchical thread packing governs the mechanical response of textiles.

View Article and Find Full Text PDF