Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The clinical manufacture of antigen-specific cytotoxic T lymphocytes (CTLs) for adoptive immunotherapy is limited by the complexity and time required to produce large numbers with the desired function and specificity. The culture conditions required are rigorous, and in some cases only achieved in 2-cm wells in which cell growth is limited by gas exchange, nutrients, and waste accumulation. Bioreactors developed to overcome these issues tend to be complex, expensive, and not always conducive to CTL growth. We observed that antigen-specific CTLs undergo 7 to 10 divisions poststimulation. However, the expected CTL numbers were achieved only in the first week of culture. By recreating the culture conditions present during this first week-low frequency of antigen-specific T cells and high frequency of feeder cells-we were able to increase CTL expansion to expected levels that could be sustained for several weeks without affecting phenotype or function. However, the number of 24-well plates needed was excessive and cultures required frequent media changes, increasing complexity and manufacturing costs. Therefore, we evaluated novel gas-permeable culture devices (G-Rex) with a silicone membrane at the base allowing gas exchange to occur uninhibited by the depth of the medium above. This system effectively supports the expansion of CTL and actually increases output by up to 20-fold while decreasing the required technician time. Importantly, this amplified cell expansion is not because of more cell divisions but because of reduced cell death. This bioprocess optimization increased T-cell output while decreasing the complexity and cost of CTL manufacture, making cell therapy more accessible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946348PMC
http://dx.doi.org/10.1097/CJI.0b013e3181c0c3cbDOI Listing

Publication Analysis

Top Keywords

antigen-specific cells
8
culture conditions
8
gas exchange
8
cell
5
ctl
5
accelerated production
4
antigen-specific
4
production antigen-specific
4
cells preclinical
4
preclinical clinical
4

Similar Publications

Radiation therapy (RT) plays important roles in cancer treatment, and the efficacy of RT depends on the abscopal effect, which results in the regression of distant and untreated tumors through localized irradiation of a single tumor lesion. This effect is mediated by effector tumor antigen-specific T cells (ETASTs) activated by RT. Monitoring the radiation-induced changes in ETASTs can be used to predict the abscopal effect.

View Article and Find Full Text PDF

Activation of PD-1/PD-L1 immune checkpoint by Zika virus.

PLoS Pathog

September 2025

School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.

Zika virus (ZIKV) has emerged as a rising concern in global health in recent years. The role of PD-1/PD-L1 immune checkpoint in acute ZIKV infection remains to be understood. In this study we demonstrated the activation of PD-1/PD-L1 immune checkpoint by ZIKV.

View Article and Find Full Text PDF

Unlabelled: Dendritic cells (DCs) are the primary inducers of immunity induced by infection or vaccination. To stimulate durable T cell-mediated immunity, multiple DC activities are required. DCs must present antigen, express costimulatory molecules, and secrete inflammatory cytokines to direct T cell activation.

View Article and Find Full Text PDF

Potential Impact of Extracorporeal Photopheresis on Trained Immunity and Organ Transplant Acceptance.

Transplant Direct

September 2025

Unidad Transplante de О́rganos, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.

Extracorporeal photopheresis (ECP) is a well-established, safe, and effective immunomodulatory therapy currently used in clinics to decrease T cell-mediated immunity in various disorders, including autoimmune diseases and chronic rejection in organ transplantation. Although the ECP procedure has been shown to induce apoptotic cells that are reintroduced into the patient at the end of the treatment, the precise tolerogenic mechanisms mediated by ECP are not fully understood. Previous in vitro studies have demonstrated that early apoptotic cells express annexins on their cell surface, which suppress myeloid cell activation on stimulation with bacterial lipopolysaccharide through Toll-like receptors.

View Article and Find Full Text PDF

Background: Protein-polysaccharide conjugate vaccines rely on the induction of T-cell-dependent responses that support germinal center (GC) reactions to potentiate the expansion of antigen-specific memory B-cell (MBC) populations and high-avidity antibody responses. The effects of adjuvants on B-cell and antibody responses are well described for protein antigens but remain largely unexplored for conjugated polysaccharidic antigens.

Methods: We assessed the effects of five adjuvants present in licensed vaccines (AS01, AS03, AS04, and aluminum hydroxide [Alum]) or under clinical evaluation (AS37) on the magnitude and quality of antigen-specific antibody responses and local/systemic B-cell responses.

View Article and Find Full Text PDF