98%
921
2 minutes
20
Studies related to the functional and thermal properties of peanut proteins are limited if compared with other vegetable protein sources. The aim of this work was to study the thermal denaturation of peanut protein isolates (PPI) by DSC. The thermal profile of PPI showed two endothermic peaks (assigned to denaturation of arachin and conarachin fractions). The thermal stability of arachin and conarachin increased when water content decreased, and a critical water level was found for both fractions. The effect of protein denaturants was studied. Low contents of urea stabilized protein fractions, but lower T(d) values were found with increasing concentrations. DeltaH values of arachin were affected by urea. SDS affected DeltaH values and thermal stability of conarachin; the arachin fraction showed higher resistance to SDS-induced denaturation. DTT addition did not affect conarachin stability, although enthalpy values decreased significantly. On the other hand, arachin was greatly affected by DTT. In summary, thermal denaturation parameters of PPI were sensitive to water content, indicating that polar groups of arachin and conarachin contribute to structure stabilization. Urea addition mainly affected the structure of the arachin fraction, which was attributed to its higher surface hydrophobicity. Results obtained from SDS and DTT suggest that hydrophobic interactions and disulfide bonds play an important role in structure maintenance of arachin and conarachin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf903426f | DOI Listing |
Food Chem X
June 2024
College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China.
Food Chem
August 2022
Applied Molecular Thermodynamics Group (THERMA), Department of Food Technology, Federal University of Viçosa, Av. P. H. Rolfs s/n, 36570900 Viçosa, MG, Brazil. Electronic address:
The thermodynamics and kinetics of arachin-Congo red (ARA-CR) and conarachin-Congo red (CON-CR) interactions were studied using surface plasmon resonance. KCl led to a reduction of up to 55% in the values of the associated kinetic constants, but it had less influence on the dissociation rates (less than 12%). The change in ionic strength had little effect on the thermodynamic stability of the complexes, but it did reduce their affinities ( [Formula: see text] from 3.
View Article and Find Full Text PDFGels
January 2022
College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
Emulsions of peanut and soy proteins, including their major components (arachin, conarachin, glycinin and β-conglycinin), were prepared by ultrasonication (300 W, 20 min) at a constant protein concentration (4%, w/v) and oil fraction (30%, v/v). These emulsions were then induced by CaCl, transglutaminase (TGase) and glucono-δ-lactone (GDL) to form emulsion gels. The optimum coagulant concentrations were obtained for peanut and soy protein-stabilized emulsion gels, such as CaCl (0.
View Article and Find Full Text PDFR Soc Open Sci
March 2021
College of Food Science and Engineering, Henan University of Technology, 100, Lianhua Street, High-tech, Zhengzhou 450001, Henan, People's Republic of China.
To lay a theoretical basis for the preparation of peanut protein-based adhesives and promote the sustainable development of the adhesive industry, properties of peanut protein isolate (PPI), arachin and conarachin-based adhesives modified by urea and epichlorohydrin (ECH) were investigated under different urea concentrations. When the urea concentration was 2 mol l, the wet shear strength of the PPI-based adhesive was 1.24 MPa with the best water resistance.
View Article and Find Full Text PDFJ Agric Food Chem
September 2019
Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing , Ministry of Agriculture and Rural Affairs , Beijing 100193 , China.
Converting peanut protein biomass waste into environmentally friendly meat substitutes by a high-moisture extrusion process can help solve both resource and waste problems and be "double green". A multiscale method combined with some emerging techniques such as atomic force microscopy-based infrared spectroscopy and X-ray microscopy was used to make the whole extrusion process visible to show the process of forming a meat-like fibrous structure using two-dimensional and three-dimensional perspectives. The results showed that the protein molecules underwent dramatic structural changes and unfolded in the extruder barrel, which created favorable conditions for molecular rearrangement in the subsequent zones.
View Article and Find Full Text PDF