98%
921
2 minutes
20
Aims: The Wnt/frizzled (Fzd) signal transduction cascade has been implicated in the proliferation, differentiation, and migration of many cell types, but the role of this pathway in cardiac fibroblast differentiation is not known. Our lab previously showed an up-regulation of Fzd-1 and -2 expression in myofibroblasts after myocardial infarction (MI), indicating a potential role for the Fzd receptor in fibroblast-myofibroblast differentiation. The present study was performed to further define the role of specific Wnt and Fzd proteins in the proliferation, migration, and differentiation of cardiac fibroblasts.
Methods And Results: Because primary fibroblasts become senescent after a few passages and are difficult to transfect, we immortalized rat cardiac fibroblasts with telomerase [cardiac fibroblasts immortalized with telomerase (CFIT)]. Proliferation of CFIT was not significantly influenced by Wnt/Fzd signalling. The migration, however, was attenuated by all Wnt/Fzd combinations tested. Also, specific Wnt/Fzd combinations modulated the expression of the following myofibroblast markers: collagen Ialpha1, collagen III, fibronectin and its splice variants, and alpha-smooth muscle actin.
Conclusion: The results indicate that myofibroblast migration and differentiation, but not proliferation, can be modulated by interventions in Wnt/Fzd signalling. Therefore, Wnt/Fzd signalling may serve as a novel therapeutic target to ameliorate wound healing after MI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cvr/cvq067 | DOI Listing |
Funct Integr Genomics
September 2025
Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2025
Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China.
Endometrial cancer (EC) is one of the most common gynecological cancers in developed countries. Like EC, most female reproductive tract malignancies are thought to be hormonally driven, with estrogen signaling acting as an oncogenic signal. The actions of estrogen are mediated through the classical nuclear estrogen receptors α (ER-α) and β (ER-β) as well as transmembrane G protein-coupled estrogen receptors (GPR30 and GPER).
View Article and Find Full Text PDFFEBS Open Bio
September 2025
Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
Primordial germ cells (PGCs) are the progenitor cells of sperm and eggs. Xenotransplantation of chicken PGCs can achieve germline transmission. However, there are still challenges in obtaining many PGCs from endangered birds in vitro.
View Article and Find Full Text PDFCancer Metastasis Rev
September 2025
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.
Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.
View Article and Find Full Text PDFCurr Biol
September 2025
Department of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA. Electronic address:
Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a differential isoform-dependent mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope Klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity to achieve tissue-specific nuclear positioning.
View Article and Find Full Text PDF