98%
921
2 minutes
20
The well calibrated force-extension behaviour of single double-stranded DNA molecules was used as a standard to investigate the performance of phase-only holographic optical tweezers at high forces. Specifically, the characteristic overstretch transition at 65 pN was found to appear where expected, demonstrating (1) that holographic optical trap calibration using thermal fluctuation methods is valid to high forces; (2) that the holographic optical traps are harmonic out to >250 nm of 2.1 mum particle displacement; and (3) that temporal modulations in traps induced by the spatial light modulator (SLM) do not affect the ability of optical traps to hold and steer particles against high forces. These studies demonstrate a new high-force capability for holographic optical traps achievable by SLM technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.200900107 | DOI Listing |
J Phys Chem B
September 2025
Department of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Fysikgränd 3, Göteborg 41296, Sweden.
The detection of biological nanoparticles (NPs), such as viruses and extracellular vesicles (EVs), plays a critical role in medical diagnostics. However, these particles are optically faint, making microscopic detection in complex solutions challenging. Recent advancements have demonstrated that distinguishing between metallic and dielectric signals with twilight off-axis holographic microscopy makes it possible to differentiate between metal and biological NPs and to quantify complexes formed from metal and biological NPs binding together.
View Article and Find Full Text PDFSensors (Basel)
August 2025
School of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China.
Due to the slender geometry and low-amplitude vibrations of stayed cables, existing vision-based methods often fail to accurately identify their full-field dynamic parameters, especially the higher-order modes. This paper proposes a novel holographic vision-based method to accurately identify the high-order full-field dynamic parameters and estimate the tension of the stayed cables. Particularly, a full-field optical flow tracking algorithm is proposed to obtain the full-field dynamic displacement information of the stayed cable by tracking the changes in the optical flow field of the continuous motion signal spectral components of holographic feature points.
View Article and Find Full Text PDFOptically pumped polymer nanolasers drive the development of integrated optoelectronic devices. Introduction of surface plasmon into nanolasers can effectively enhance the local electromagnetic field in the optical pumping processes. However, significant quenching effects on organic fluorescence emissions bring the challenge in high-efficient lasing from the distributed feedback (DFB) nano-device loaded with noble metal particles.
View Article and Find Full Text PDFLab Chip
August 2025
Istituto di Scienze Applicate e Sistemi Intelligenti (ISASI), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
Marine ecosystems are in the spotlight, because environmental changes are threatening biodiversity and ecological functions. In this context, microalgae play key ecological roles both in planktonic and benthic ecosystems. Consequently, they are considered indispensable targets for global monitoring programs.
View Article and Find Full Text PDFLight Sci Appl
August 2025
SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK.
Organic light-emitting diodes (OLEDs) are thin film optoelectronic devices that feature simple fabrication, light weight and broad tunability, which makes them widely used in mobile phone and TV displays. As a flat and surface-emitting light source, OLEDs are also used in emerging applications such as optical wireless communications, biophotonics and sensing, where the ability to integrate with other technologies makes them good candidates to realise miniaturised photonic platforms. Control of the OLED far-field emission is increasingly important for both displays and these emerging applications.
View Article and Find Full Text PDF