Intracellular processes depend on a strict spatial and temporal organization of proteins and organelles. Therefore, directly linking molecular to nanoscale ultrastructural information is crucial in understanding cellular physiology. Volume or three-dimensional (3D) correlative light and electron microscopy (volume-CLEM) holds unique potential to explore cellular physiology at high-resolution ultrastructural detail across cell volumes.
View Article and Find Full Text PDFFront Mol Biosci
October 2020
Multi-step assembly of individual protein building blocks is key to the formation of essential higher-order structures inside and outside of cells. Optical tweezers is a technique well suited to investigate the mechanics and dynamics of these structures at a variety of size scales. In this mini-review, we highlight experiments that have used optical tweezers to investigate protein assembly and mechanics, with a focus on the extracellular matrix protein collagen.
View Article and Find Full Text PDFIn correlative light and electron microscopy (CLEM), the capabilities of fluorescence microscopy (FM) and electron microscopy (EM) are united. FM combines a large field of view with high sensitivity for detecting fluorescence, which makes it an excellent tool for identifying regions of interest. EM has a much smaller field of view but offers superb resolution that allows studying cellular ultrastructure.
View Article and Find Full Text PDFFluorescence microscopy (FM) and electron microscopy (EM) are complementary techniques. FM affords examination of large fields of view and identifying regions of interest but has a low resolution. EM exhibits excellent resolution over a limited field of view.
View Article and Find Full Text PDFIn this work, gold nanoparticles coated with a fluorescently labelled (rhodamine B) silica shell are presented as fiducial markers for correlative light and electron microscopy (CLEM). The synthesis of the particles is optimized to obtain homogeneous, spherical core-shell particles of arbitrary size. Next, particles labelled with different fluorophore densities are characterized to determine under which conditions bright and (photo)stable particles can be obtained.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
February 2018
The localized inner 4f shell transitions of lanthanide ions are largely independent of the local surroundings. The luminescence properties of Ln ions doped into nanocrystals (NCs) are therefore similar to those in bulk crystals. Quantum size effects, responsible for the unique size-dependent luminescence of semiconductor NCs, are generally assumed not to influence the optical properties of Ln-doped insulator NCs.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2017
Lanthanide-doped nanocrystals (NCs) differ from their bulk counterparts due to their large surface to volume ratio. It is generally assumed that the optical properties are not affected by size effects as electronic transitions occur within the well-shielded 4f shell of the lanthanide dopant ions. However, defects and disorder in the surface layer can affect the luminescence properties.
View Article and Find Full Text PDFWe present a universally applicable 3D-printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun-facing surface of the solar cell and retro-reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage.
View Article and Find Full Text PDFNanoscale Res Lett
December 2016
Lanthanide ions are promising for the labeling of silica nanoparticles with a specific luminescent fingerprint due to their sharp line emission at characteristic wavelengths. With the increasing use of silica nanoparticles in consumer products, it is important to label silica nanoparticles in order to trace the biodistribution, both in the environment and living organisms.In this work, we synthesized LaPO4 nanocrystals (NCs) with sizes ranging from 4 to 8 nm doped with europium or cerium and terbium.
View Article and Find Full Text PDFWe present a new experimental system of monodisperse, soft, frictionless, fluorescent labeled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The elastic shells in a jammed packing are deformed in such a way that at each contact one of the shells buckles with a dimple and the other remain spherical, closely resembling overlapping spheres. Using confocal microscopy, we obtained 3D stacks of images of shells at different volume fractions which were subsequently processed in ImageJ software to find their coordinates.
View Article and Find Full Text PDFMethods Appl Fluoresc
May 2014
The combined analysis of spectral and lifetime images has the potential to provide more accurate and more detailed information about Förster resonance energy transfer (FRET). We have developed a novel FRET analysis method to analyze images recorded by multispectral lifetime imaging. The new method is based on a phasor approach and facilitates the simultaneous analysis of decay kinetics of donor and acceptor molecules.
View Article and Find Full Text PDFThe lac repressor protein (LacI) efficiently represses transcription of the lac operon in Escherichia coli by binding to two distant operator sites on the bacterial DNA and causing the intervening DNA to form a loop. We employed single-molecule tethered particle motion to observe LacI-mediated loop formation and breakdown in DNA constructs that incorporate optimized operator binding sites and intrinsic curvature favorable to loop formation. Previous bulk competition assays indirectly measured the loop lifetimes in these optimized DNA constructs as being on the order of days; however, we measured these same lifetimes to be on the order of minutes for both looped and unlooped states.
View Article and Find Full Text PDFA method, is presented for blind unmixing spectrally resolved fluorescence lifetime images. The method is based on the combined analysis of spectral and lifetime phasors and allows unmixing of up to three components without any prior knowledge. Fractional intensities, spectra and decay curves of the individual components can be extracted with this new technique.
View Article and Find Full Text PDFAppl Environ Microbiol
October 2013
Label-free nonlinear spectral imaging microscopy (NLSM) records two-photon-excited fluorescence emission spectra of endogenous fluorophores within the specimen. Here, NLSM is introduced as a novel, minimally invasive method to analyze the metabolic state of fungal hyphae by monitoring the autofluorescence of NAD(P)H and flavin adenine dinucleotide (FAD). Moreover, the presence of melanin was analyzed by NLSM.
View Article and Find Full Text PDFThe potential of digital holography for complex manipulation of micron-sized particles with optical tweezers has been clearly demonstrated. By contrast, its use in quantitative experiments has been rather limited, partly due to fluctuations introduced by the spatial light modulator (SLM) that displays the kinoforms. This is an important issue when high temporal or spatial stability is a concern.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2011
Molecular spiders are synthetic biomolecular walkers that use the asymmetry resulting from cleavage of their tracks to bias the direction of their stepping motion. Using Monte Carlo simulations that implement the Gillespie algorithm, we investigate the dependence of the biased motion of molecular spiders, along with binding time and processivity, on tunable experimental parameters, such as number of legs, span between the legs, and unbinding rate of a leg from a substrate site. We find that an increase in the number of legs increases the spiders' processivity and binding time but not their mean velocity.
View Article and Find Full Text PDFThe well calibrated force-extension behaviour of single double-stranded DNA molecules was used as a standard to investigate the performance of phase-only holographic optical tweezers at high forces. Specifically, the characteristic overstretch transition at 65 pN was found to appear where expected, demonstrating (1) that holographic optical trap calibration using thermal fluctuation methods is valid to high forces; (2) that the holographic optical traps are harmonic out to >250 nm of 2.1 mum particle displacement; and (3) that temporal modulations in traps induced by the spatial light modulator (SLM) do not affect the ability of optical traps to hold and steer particles against high forces.
View Article and Find Full Text PDFBiomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological function, derives from the complexity afforded by protein building blocks. Here, we discuss a novel bottom-up approach to understanding biological motors by considering the construction of synthetic protein motors.
View Article and Find Full Text PDFOptical tweezers have become powerful tools to manipulate biomolecular systems, but are increasingly difficult to use when the size of the molecules is <1 microm. Many important biological structures and processes, however, occur on the submicron length scale. Therefore, we developed and characterized an optical manipulation protocol that makes this length scale accessible by stretching the molecule in the axial direction of the laser beam, thus avoiding limiting artifacts from steric hindrances from the microscope coverslip and other surface effects.
View Article and Find Full Text PDFThe far-field optical imaging of mitochondria of live cells without the use of any label is demonstrated. It uses a highly sensitive photothermal method and has a resolution comparable to confocal fluorescence setups. The morphological states of mitochondria were followed under different physiological treatments, and the role of cytochrome c was ruled out as the main origin of the photothermal signals.
View Article and Find Full Text PDFTracking individual nano-objects in live cells during arbitrary long times is a ubiquitous need in modern biology. We present here a method for tracking individual 5-nm gold nanoparticles on live cells. It relies on the photothermal effect and the detection of the Laser Induced Scattering around a NanoAbsorber (LISNA).
View Article and Find Full Text PDFWe present a novel readout scheme for gold nanoparticle-based DNA microarrays relying on "Laser-Induced Scattering around a NanoAbsorber". It provides direct counting of individual nanoparticles present on each array spot and stable signals, without any silver enhancement. Given the detection of nanometer-sized particles, which minimize the steric hindrance, the linear dynamic range of the method is particularly large and well suited for microarray detection.
View Article and Find Full Text PDFPhys Rev Lett
December 2004
We introduce a new, highly sensitive, and simple heterodyne optical method for imaging individual nonfluorescent nanoclusters and nanocrystals. A 2 order of magnitude improvement of the signal is achieved compared to previous methods. This allows for the unprecedented detection of individual small absorptive objects such as metallic clusters (of 67 atoms) or nonluminescent semiconductor nanocrystals.
View Article and Find Full Text PDFA method that combines fluorescence imaging and spectroscopy of single molecules at room temperature is presented. This approach allows us to identify a number of imaged molecules unequivocally by simultaneously recording their fluorescence emission spectra. Furthermore, their spectral characteristics not only allow us to separate different fluorescent labels quantitatively and qualitatively but also provide information on the microenvironment of the molecules.
View Article and Find Full Text PDFWe describe a simple and straightforward approach for homogeneous and isothermal detection of individual rolling circle replication (RCR) products, which represent individual padlock probe circularization events. The RCR products constitute tens of kilobases long single-stranded tandem repeated copies of the probe sequence, and in solution, they fold into micrometer-sized random coils. The method is based on the local enrichment of fluorescence-labeled probes that hybridize to the coiled RCR products compared to the concentration of free probes in solution.
View Article and Find Full Text PDF