Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Progress in understanding the biology of protein fatty acylation has been impeded by the lack of rapid direct detection and identification methods. We first report that a synthetic omega-alkynyl-palmitate analog can be readily and specifically incorporated into GAPDH or mitochondrial 3-hydroxyl-3-methylglutaryl-CoA synthase in vitro and reacted with an azido-biotin probe or the fluorogenic probe 3-azido-7-hydroxycoumarin using click chemistry for rapid detection by Western blotting or flat bed fluorescence scanning. The acylated cysteine residues were confirmed by MS. Second, omega-alkynyl-palmitate is preferentially incorporated into transiently expressed H- or N-Ras proteins (but not nonpalmitoylated K-Ras), compared with omega-alkynyl-myristate or omega-alkynyl-stearate, via an alkali sensitive thioester bond. Third, omega-alkynyl-myristate is specifically incorporated into endogenous co- and posttranslationally myristoylated proteins. The competitive inhibitors 2-bromopalmitate and 2-hydroxymyristate prevented incorporation of omega-alkynyl-palmitate and omega-alkynyl-myristate into palmitoylated and myristoylated proteins, respectively. Labeling cells with omega-alkynyl-palmitate does not affect membrane association of N-Ras. Furthermore, the palmitoylation of endogenous proteins including H- and N-Ras could be easily detected using omega-alkynyl-palmitate as label in cultured HeLa, Jurkat, and COS-7 cells, and, promisingly, in mice. The omega-alkynyl-myristate and -palmitate analogs used with click chemistry and azido-probes will be invaluable to study protein acylation in vitro, in cells, and in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035521PMC
http://dx.doi.org/10.1194/jlr.D002790DOI Listing

Publication Analysis

Top Keywords

click chemistry
12
myristoylated proteins
8
proteins
5
omega-alkynyl-palmitate
5
rapid selective
4
selective detection
4
detection fatty
4
fatty acylated
4
acylated proteins
4
proteins omega-alkynyl-fatty
4

Similar Publications

Enzyme-Click Postsynthetic Modification of Covalent Organic Frameworks for Photocatalytic HO Production.

J Am Chem Soc

September 2025

Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Guangdong-Hongkong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices and Department of Chemistry, S

Postsynthetic modification (PSM) is a powerful strategy for tailoring the structure and functionality of covalent organic frameworks (COFs). In this work, we present a novel enzymatic PSM strategy for functional group engineering within COFs. By taking advantage of enzymatic catalysis, 2-hydroxyethylthio (-S-EtOH) and ethylthio (-S-Et) groups were covalently implanted within the COF pore channels with high grafting efficiency under ambient aqueous conditions, highlighting the mild, efficient, and ecofriendly nature of this approach.

View Article and Find Full Text PDF

The advancement of bioorthogonal cleavage platforms has emerged as a critical frontier in chemical biology, offering precise molecular liberation through physiologically compatible activation mechanisms. Despite its significant potential, ensuring efficacy typically requires rapid reaction kinetics, high-efficiency payload release, and stable reactants; however, relevant reports remain sparse. Herein, we developed a strain-promoted alkyne-nitrone cycloaddition (SPANC)-based click-release chemistry through installation of a carbamate-linked release moiety at the propargyl position of cyclooctyne, triggering a spontaneous elimination following click cycloaddition to achieve efficient payload liberation.

View Article and Find Full Text PDF

Click chemistry-driven adhesive hydrogel for efficient healing of infected wounds through multistage comprehensive management.

J Mater Chem B

September 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Infected wound treatment remains a critical challenge in clinical medicine. Although existing treatments, like local debridement, antimicrobial agents, and growth factor therapies, have demonstrated certain therapeutic effects, they primarily target only specific stages of wound healing. Moreover, the escalating issue of antibiotic resistance limits their efficacy.

View Article and Find Full Text PDF

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles.

Beilstein J Nanotechnol

August 2025

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.

The preparation of multimodal nanoparticles by capping magnetic iron oxide nanoparticles (IONPs) with functional organic molecules is a major area of research for biomedical applications. Conjugation reactions, such as carbodiimide coupling and the highly selective class of reactions known as "click chemistry", have been instrumental in tailoring the ligand layers of IONPs to produce functional biomedical nanomaterials. However, few studies report the controls performed to determine if the loading of molecules onto IONPs is due to the proposed coupling reaction(s) employed, or some other unknown interaction with the IONP surface.

View Article and Find Full Text PDF

Proteolysis-targeting chimeras (PROTACs) have emerged as a powerful modality for selectively degrading intracellular proteins via the ubiquitin-proteasome system. However, their development is often hindered by the limited availability of high-affinity small-molecule ligands, particularly for challenging targets, such as transcription factors. Aptamers─synthetic oligonucleotides with high affinity and specificity─offer a promising alternative as target-binding modules in the PROTAC design.

View Article and Find Full Text PDF