Optimal number of regulatory T cells.

J Theor Biol

Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan.

Published: March 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The adaptive immune system of a vertebrate may attack its own body, causing autoimmune diseases. Regulatory T cells suppress the activity of the autoreactive effector T cells, but they also interrupt normal immune reactions against foreign antigens. In this paper, we discuss the optimal number of regulatory T cells that should be produced. We make the assumptions that some self-reactive immature T cells may fail to interact with their target antigens during the limited training period and later become effector T cells causing autoimmunity, and that regulatory T cells exist that recognize self-antigens. When a regulatory T cell is stimulated by its target self-antigen on an antigen-presenting cell (APC), it stays there and suppresses the activation of other naive T cells on the same APC. Analysis of the benefit and the harm of having regulatory T cells suggests that the optimal number of regulatory T cells depends on the number of self-antigens, the severity of the autoimmunity, the abundance of pathogenic foreign antigens, and the spatial distribution of self-antigens in the body. For multiple types of self-antigen, we discuss the optimal number of regulatory T cells when the self-antigens are localized in different parts of the body and when they are co-localized. We also examine the separate regulation of the abundances of regulatory T cells for different self-antigens, comparing it with the situation in which they are constrained to be equal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2009.11.012DOI Listing

Publication Analysis

Top Keywords

regulatory cells
32
optimal number
16
number regulatory
16
cells
12
regulatory
9
effector cells
8
foreign antigens
8
discuss optimal
8
cells self-antigens
8
self-antigens
5

Similar Publications

Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.

View Article and Find Full Text PDF

Progress in immunoregulatory mechanisms during distraction osteogenesis.

Front Bioeng Biotechnol

August 2025

Department of Orthopaedic and Reconstructive Surgery/Pediatric Orthopaedics, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.

Distraction osteogenesis (DO) is an endogenous bone tissue engineering technique that harnesses the regenerative potential of bone and has been widely applied in limb lengthening, bone defect repair, and craniofacial reconstruction. The DO procedure consists of three distinct phases: the latency phase, the distraction phase, and the consolidation phase, each characterized by unique biological processes. In recent years, increasing attention has been directed toward the role of the immune system during DO.

View Article and Find Full Text PDF

Sustained Mg/Sr ion delivery from injectable silk fibroin hydrogels drives SCAP osteogenic differentiation.

iScience

September 2025

Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.

This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.

View Article and Find Full Text PDF

The STING pathway has emerged as a therapeutic target in tumor immunotherapy due to its ability to induce interferon responses, enhance antigen presentation and activate T cells. Despite its therapeutic potential, STING pathway-based tumor immunotherapy has been limited by challenges in poor cellular delivery, rapid degradation of STING agonists, and potential systemic toxicity. Recently, advancements in nanotechnology have tried to overcome these limitations by providing platforms for more accurate and efficient targeted delivery of agonists, more moderate sustained STING pathway activation, and more efficient immune presentation and anti-tumor immune response.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a group of common clinical syndromes characterized by a rapid decline in renal function over a short period of time. At present, the treatment methods are limited, and research is needed to identify drugs that could alleviate renal ischemia-reperfusion (I/R) injury. Tetramethylpyrazine (TMP) is a bioactive alkaloid extracted from the Chinese herbal medicine Chuanxiong.

View Article and Find Full Text PDF