Targeted transduction via CD4 by a lentiviral vector uses a clathrin-mediated entry pathway.

J Virol

Department of Microbiology, Immunology and Molecular Genetics, and Medicine, UCLA AIDS Institute, 615 Charles E. Young Dr. East, BSRB 173, Los Angeles, CA 90095, USA.

Published: December 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We recently developed a novel targeting Sindbis virus envelope pseudotyped lentiviral vector, 2.2ZZ, which acquires specific transduction capacity by antibody conjugation and binding with specific antigens on the surface of targeted cells. Here we characterize the virological properties of this vector by examining its targeting to CD4 antigen. Our results show that entry is dependent on CD4 cell surface density and occurs via the clathrin-mediated endocytic pathway. These findings provide insight into the mechanism of infection by a new viral vector with combined properties of Sindbis virus and lentiviruses and infectivity conferred by monoclonal antibody-ligand interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786851PMC
http://dx.doi.org/10.1128/JVI.01530-09DOI Listing

Publication Analysis

Top Keywords

lentiviral vector
8
sindbis virus
8
targeted transduction
4
transduction cd4
4
cd4 lentiviral
4
vector
4
vector clathrin-mediated
4
clathrin-mediated entry
4
entry pathway
4
pathway developed
4

Similar Publications

Sickle cell disease (SCD) is an inherited blood disorder marked by the production of abnormal hemoglobin, leading to the distortion-or sickling-of red blood cells. The SCD arises from a single-point mutation that substitutes glutamic acid with valine at the sixth codon of the β-globin chain in hemoglobin. This substitution promotes deoxyhemoglobin aggregation, elevating red blood cell stiffness, and triggering vaso-occlusive and hemolytic repercussions.

View Article and Find Full Text PDF

Multiplex engineering using microRNA-mediated gene silencing in CAR T cells.

Front Immunol

September 2025

Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.

Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.

View Article and Find Full Text PDF

CAR-T cell therapy has been proven effective in various autoimmune diseases, with most studies utilizing lentiviral-transduced CAR-T cells. In recent years, retroviral vector-transduced CAR-T cells-characterized by a high positivity rate, stable cell lines, and lower plasmid requirements-have attracted increasing attention. This article presents a complex case of a patient with SLE combined with APS and TBIRS.

View Article and Find Full Text PDF

Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.

View Article and Find Full Text PDF

Exendin-4 Prevents oxLDL-Induced upregulation of TREM2 and attenuates foam cell formation and inflammation in Macrophages.

Biochem Pharmacol

September 2025

Guizhou Medical University, Guiyang 550004 Guizhou, PR China; Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004 Guizhou, PR China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, G

Atherosclerosis (AS), a chronic inflammatory disease and a leading cause of cardiovascular morbidity and mortality. Macrophage-mediated lipid uptake and inflammation are central to plaque formation. TREM2, an immunoreceptor expressed in macrophages, has been reported to regulate lipid metabolism and inflammation, yet its role in atherosclerosis remains controversial.

View Article and Find Full Text PDF