An evaluation of the chick cardiomyocyte micromass system for identification of teratogens in a blind trial.

Reprod Toxicol

FRAME Alternatives Laboratories, School of Biomedical Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom.

Published: December 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The chick micromass culture system has advantages over the validated rat system - ready availability and non-culling of the donor parent - but needs to give comparable results. This study confirmed comparability and the ability to extend the system to cover cardiac effects. It was also compared with the validated embryonic stem cell cardiomyocyte model. A teratogen and paired non-teratogen with known in vivo effects were used. Differential effects were measured via changes in cell protein content, cell viability (resazurin reduction and neutral red uptake), and cell contractility. Results showed that teratogens [L-ethionine, 5-fluorouracil and sulphisoxazole] could be distinguished from non-teratogens [DL-methionine, 6-methyluracil and sulphanilamide respectively]. Dichloroacetone and dichloropropanol affected embryonic stem cells but not the micromass; dichloropropanol had a greater effect than dichloroacetone. This approach revealed differential effects on contractility independent of effects on activity/viability, whilst the total cell protein remained unchanged. We suggest that pre-validation of this system should be examined.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.reprotox.2009.07.003DOI Listing

Publication Analysis

Top Keywords

embryonic stem
8
differential effects
8
cell protein
8
system
5
effects
5
cell
5
evaluation chick
4
chick cardiomyocyte
4
cardiomyocyte micromass
4
micromass system
4

Similar Publications

Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.

View Article and Find Full Text PDF

Objectives: To investigate the antitumor effects of aucubin (AC) in non-small cell lung cancer (NSCLC) and uncover its plausible mechanism against lung cancer stem-like cells (LCSCs).

Methods: In vitro experiments included MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a reagent commonly used for cell viability assay) and colony formation assays to assess anti-proliferative effects on A549 and NCI-H1975 lung cancer cell lines, wound healing and Transwell invasion assays to evaluate inhibition of cell migration and invasion, tumorsphere-formation experiments to detect changes in NSCLC cell stemness, as well as Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses to measure the expression of LCSC markers (CD44, CD133, Oct4, and Nanog). In vivo experiments were conducted to observe the impact of AC on NSCLC metastasis and mouse survival rates.

View Article and Find Full Text PDF

The Age-Associated Long Noncoding RNA lnc81 Regulates Ovarian Granulosa Cell Proliferation and Apoptosis Through TEAD2-CCN1/2 Pathway in Mice.

J Cell Physiol

September 2025

Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.

View Article and Find Full Text PDF

Establishment and optimization of the two-step induction system for generating primordial germ cell-like cells from chicken embryonic stem cells.

FEBS Open Bio

September 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.

Primordial germ cells (PGCs) are the progenitor cells of sperm and eggs. Xenotransplantation of chicken PGCs can achieve germline transmission. However, there are still challenges in obtaining many PGCs from endangered birds in vitro.

View Article and Find Full Text PDF

The flexibility of the spatio-temporal genome replication program during development and disease highlights the regulatory role of plastic epigenetic mechanisms over genetic determinants. Histone post-translational modifications are broadly implicated in replication timing control, yet the specific mechanisms through which individual histone marks influence replication dynamics, particularly in heterochromatin, remain unclear. Here, we demonstrate that H3K36me3 dynamically enriches at pericentromeric heterochromatin, composed of major satellite DNA repeats, prior to replication during mid S phase in mouse embryonic stem cells.

View Article and Find Full Text PDF