98%
921
2 minutes
20
Symmetric chloroplast division requires a prokaryote-derived division regulator protein MinD, whose subchloroplastic localization remains to be completely established. We investigated the localization and functionality of AtMinD1 (Arabidopsis thaliana MinD) fused with a dual hemagglutinin epitope (dHA) or a yellow fluorescent protein (YFP). AtMinD1-dHA, which successfully complemented the arc11/atminD1 mutant phenotype, was predominantly located at the envelope membrane and the mid-chloroplast constriction site. Meanwhile, AtMinD1-YFP was non-functional and showed suborganellar localization partly similar to that of AtMinD1-dHA. This prompts us to reevaluate earlier transgenic and transient expression studies using fluorescent protein-tagged AtMinD1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1271/bbb.90309 | DOI Listing |
Turk J Pediatr
September 2025
West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: The α-actinin-4 (ACTN4) gene encodes an actin-binding protein, which plays a crucial role in maintaining the structure and function of podocytes. Previous studies have confirmed that ACTN4 mutations can lead to focal segmental glomerulosclerosis-1 (FSGS1), a rare disease primarily manifesting in adolescence or adulthood, characterized by mild to moderate proteinuria, with some cases progressing slowly to end-stage renal disease.
Case Presentation: We report a 12.
JMIR Res Protoc
September 2025
Department of Medical Oncology, Early Phase Unit, Georges-François Leclerc Centre, Dijon, France.
Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.
View Article and Find Full Text PDFAnal Chem
September 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.
View Article and Find Full Text PDFClin Transplant
September 2025
Avera Medical Group Transplant & Liver Surgery, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota, USA.
Background: In the United States, a severe organ shortage precipitates an extensive transplant waitlist. Living donor kidneys are functionally superior to those from deceased donors and offer an alternative to close the supply-demand gap.
Methods: A retrospective review of 2147 patients who self-referred to begin the living kidney donation workup process at our center between June 1, 2012, and October 1, 2023 was conducted with subsequent statistical analysis of gathered data.
PLoS Comput Biol
September 2025
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America.
Research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is key to overcoming experimental limitations in humans and essential to building a detailed understanding of the in-vivo consequences of tES. Insights from such animal models are needed to develop targeted and effective therapeutic applications of non-invasive brain stimulation in humans. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies.
View Article and Find Full Text PDF