98%
921
2 minutes
20
The imprinted expression of the mouse Igf2/H19 locus is governed by the differential methylation of the imprinting control region (ICR), which is established initially in germ cells and subsequently maintained in somatic cells, depending on its parental origin. By grafting a 2.9-kbp H19 ICR fragment into a human beta-globin yeast artificial chromosome in transgenic mice, we previously showed that the ICR could recapitulate imprinted methylation and expression at a heterologous locus, suggesting that the H19 ICR in the beta-globin locus contained sufficient information to maintain the methylation mark (K. Tanimoto, M. Shimotsuma, H. Matsuzaki, A. Omori, J. Bungert, J. D. Engel, and A. Fukamizu, Proc. Natl. Acad. Sci. USA 102:10250-10255, 2005). Curiously, however, the transgenic H19 ICR was not methylated in sperm, which was distinct from that seen in the endogenous locus. Here, we reevaluated the ability of the H19 ICR to mark the parental origin using more rigid criteria. In the testis, the methylation levels of the solitary 2.9-kbp transgenic ICR fragment varied significantly between six transgenic mouse lines. However, in somatic cells, the paternally inherited ICR fragment exhibited consistently higher methylation levels at five out of six randomly integrated sites in the mouse genome. These results clearly demonstrated that the H19 ICR could acquire parent-of-origin-dependent methylation after fertilization independently of the chromosomal integration site or the prerequisite methylation acquisition in male germ cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725707 | PMC |
http://dx.doi.org/10.1128/MCB.00275-09 | DOI Listing |
PLoS Genet
August 2025
University of Pennsylvania Perelman School of Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America.
Precise, monoallelic expression of imprinted genes is governed by cis regulatory elements called imprinting control regions (ICRs) and enhancer-promoter (E-P) interactions shaped by local chromatin architecture. The Igf2/H19 locus employs allele-specific CTCF binding at the ICR to instruct enhancer accessibility to maternal H19 and paternal Igf2 promoters. Here, we investigate the CTCF-bound centrally conserved domain (CCD), intergenic to H19 and Igf2, and an adjacent widely expressed lncRNA.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
Immunoglobulin A nephropathy (IgAN) stands as the most prevalent primary glomerulonephritis globally, almost half of patients progress to end-stage kidney disease (ESKD). However, the precise pathogenesis of IgAN remains elusive. Long non-coding RNAs (lncRNAs), non-protein-coding transcripts that regulate gene expression, have been found to exhibit distinct expression patterns in various disease states.
View Article and Find Full Text PDFCommun Biol
December 2024
Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
Beckwith-Wiedemann syndrome (BWS) is caused by a gain of methylation (GOM) at the imprinting control region within the Igf2-H19 domain on the maternal allele (H19-ICR GOM). Mutations in the binding sites of several transcription factors are involved in H19-ICR GOM and BWS. However, the responsible sequence(s) for H19-ICR GOM with BWS-like overgrowth has not been identified in mice.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
EED (embryonic ectoderm development) is a core subunit of the polycomb repressive complex 2 (PRC2), which senses the trimethylation of histone H3 lysine 27 (H3K27). However, its biological function in cerebellar development remains unknown. Here, we show that EED deletion from neural stem cells (NSCs) or cerebellar granule cell progenitors (GCPs) leads to reduced GCPs proliferation, cell death, cerebellar hypoplasia, and motor deficits in mice.
View Article and Find Full Text PDFChin Med J (Engl)
November 2024
Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
Background: Intrauterine growth restriction (IUGR) is associated with adverse metabolic outcomes during adulthood. Histone modifications and changes in DNA methylation-affected genes are important for fetal development. This study aimed to confirm the epigenetic mechanisms in IUGR.
View Article and Find Full Text PDF