Aerosol background at two remote CAWNET sites in western China.

Sci Total Environ

Department of Marine Meteorology, College of Physical and Environmental Oceanography, Ocean University of China, 238 Songling Rd., Laoshan District, Qingdao 266100, China.

Published: May 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The frequency distributions and some statistical features of background aerosol concentrations were investigated at two remote China Atmosphere Watch Network (CAWNET) stations. The estimated elemental carbon (EC) background at Akdala (AKD) in the mid-latitudes of northwestern China (approximately 0.15 microg m(-3)) was only half of that at Zhuzhang (ZUZ) in low-latitude southwestern China (approximately 0.30 microg m(-3)). The contributions of EC to the aerosol mass also differed between sites: EC contributed 3.5% of the PM(10) mass at AKD versus 5.1% at ZUZ. Large percentages of the total organic carbon (OC) apparently were secondary organic carbon (SOC); SOC/OC averaged 81% at ZUZ and 68% at AKD. The OC/EC ratios in PM(10) (ZUZ: 11.9, AKD: 12.2) were comparable with other global background sites, and the OC/EC ratios were used to distinguish polluted periods from background conditions. The SO(4)(2)(-), NH(4)(+) and soil dust loadings at AKD were higher and more variable than at ZUZ, probably due to impacts of pollution from Russia and soil dust from the Gobi and adjacent deserts. In contrast to ZUZ, where the influences from pollution were weaker, the real-time PM(10) mass concentrations at AKD were strongly skew right and the arithmetic mean concentrations of the aerosol populations were higher than their medians. Differences in the aerosol backgrounds between the sites need to be considered when evaluating the aerosol's regional climate effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2009.02.012DOI Listing

Publication Analysis

Top Keywords

microg m-3
8
pm10 mass
8
organic carbon
8
oc/ec ratios
8
soil dust
8
akd
6
zuz
6
aerosol
5
aerosol background
4
background remote
4

Similar Publications

Article Synopsis
  • * The X-ray process enhances mercury oxidation by producing electrons, while an electric field directs oxidized mercury to bond with the nanofiber mat.
  • * The study found that the process captures mercury in two ways: chemically (0.2 to 10 ng in total) and on the surface of the fibers (10 microg/m per minute), providing a promising solution to reduce emissions from coal power plants.
View Article and Find Full Text PDF

Objective: We examined whether the risk of stillbirth was related to ambient air pollution in a UK population.

Design: Prospective case-control study.

Setting: Forty-one maternity units in the UK.

View Article and Find Full Text PDF

To explore the diurnal and seasonal characteristics of PM25, hourly PM25 concentration data ol It tixed monitoring sites in Chongqing urban area were collected continuously from June 2014 to May 2015. The result showed that: (1) the seasonal concentration of PM2.5 in different seasons decreased in the order of winter, autumn, spring and summer (P < 0.

View Article and Find Full Text PDF

Intensive haze shrouded central and eastern parts of China in Dec. 2013. In this study, the mass concentrations of gaseous and particulate pollutants, and also the chemical compositions of fine particulate matters were obtained based on in-situ measurement in Shanghai urban area.

View Article and Find Full Text PDF

Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing.

View Article and Find Full Text PDF