Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A novel approach was proposed, utilizing an electrical field and X-ray irradiation to oxidize elemental mercury (Hg) and encapsulate it within a nanofibrous mat made of Polyamide 6/Chitosan. The X-rays contributed significantly to the conversion of Hg into Hg by producing electrons through the photoionization of gas molecules. The positive and negative pole electrodes generated an electric field that exerted a magnetic force, resulting in the redirection of oxidized elemental mercury towards the negative pole electrode, which was coupled with a Polyamide 6/Chitosan nanofiber mat. The evaluation of the Polyamide 6/Chitosan nanofibers exposed to oxidized mercury showed that the mercury, found in the steam of a specially designed filtration device, was captured in two different forms. Firstly, it was chemically bonded with concentrations ranging from 0.2 to 10 ng of Hg in total. Secondly, it was retained on the surface of the Polyamide 6/Chitosan nanofibers with a concentration of 10 microg/m of Hg per minute. Nevertheless, a concentration of 10 microg/m of mercury is considered significant, given that the emission levels of mercury from each coal power plant typically vary from approximately 4.72 to 44.07 microg/m. Thus, this research presents a viable approach to reducing mercury emissions from coal-fired power plants, which could result in lower operational expenses and less secondary environmental effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207462 | PMC |
http://dx.doi.org/10.3390/polym16121721 | DOI Listing |