Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mounting evidence suggests that fishing can trigger trophic cascades and alter food web dynamics, yet its effects on ecosystem function remain largely unknown. We used the large-scale experimental framework of four marine reserves, spanning an oceanographic gradient in northeastern New Zealand, to test the extent to which the exploitation of reef predators can alter kelp carbon flux and secondary production. We provide evidence that the reduction of predatory snapper (Pagrus auratus) and lobster (Jasus edwardsii) can lead to an increase in sea urchins (Evechinus chloroticus) and indirect declines in kelp biomass in some locations but not others. Stable carbon isotope ratios (delta13C) of oysters (Crassostrea gigas) and mussels (Perna canaliculus) transplanted in reserve and fished sites within four locations revealed that fishing indirectly reduced the proportion of kelp-derived organic carbon assimilated by filter feeders in two locations where densities of actively grazing sea urchins were 23.7 and 8.3 times higher and kelp biomass was an order of magnitude lower than in non-fished reserve sites. In contrast, in the two locations where fishing had no effect on urchin density or kelp biomass, we detected no effect of fishing on the carbon signature of filter feeders. We show that the effects of fishing on nearshore trophic structure and carbon flux are context-dependent and hinge on large-scale, regional oceanographic factors. Where cascading effects of fishing on kelp biomass were documented, enhanced assimilation of kelp carbon did not result in the magnification of secondary production. Instead, a strong regional gradient in filter feeder growth emerged, best predicted by chlorophyll a. Estimates of kelp contribution to the diet of transplanted consumers averaged 56.9% +/- 6.2% (mean +/- SE) for mussels and 33.8% +/- 7.3% for oysters, suggesting that organic carbon fixed by kelp is an important food source fueling northeastern New Zealand's nearshore food webs. The importance of predators in mediating benthic primary production and organic carbon flux suggests that overfishing can have profound consequences on ecosystem functioning particularly where pelagic primary production is limiting. Our results underscore the broader ecosystem repercussions of overfishing and its context-dependent effects.

Download full-text PDF

Source
http://dx.doi.org/10.1890/07-1777.1DOI Listing

Publication Analysis

Top Keywords

kelp biomass
16
effects fishing
12
carbon flux
12
organic carbon
12
carbon
9
cascading effects
8
kelp
8
kelp carbon
8
secondary production
8
sea urchins
8

Similar Publications

Using eDNA tools to examine the impact of kelp farming on underlying sediments.

PLoS One

September 2025

Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America.

Using environmental DNA (eDNA)-based tools, we examined sediments underlying a ~ 1.25 hectare commercial kelp farm in the Gulf of Maine growing sugar kelp (Saccharina latissima) for two farming seasons, post-harvest. Two eDNA methods were used: a newly designed S.

View Article and Find Full Text PDF

Potential blue carbon in the fringe of Southern European Kelp forests.

Sci Rep

August 2025

CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.

Blue Carbon encompasses the organic carbon sequestered and stored by coastal and marine ecosystems, including seaweed forests. This study aims to quantify the potential Blue Carbon storage and sequestration rates of subtidal kelp forests in Northern Portugal, focusing on the most dominant species Laminaria hyperborea and Saccorhiza polyschides. Through in-situ measurements of forest extension, biomass, growth, and carbon content, we determined that these kelp forests store approximately 16.

View Article and Find Full Text PDF

Kelp forests form some of the most productive areas on earth and are proposed to sequester carbon in the ocean, largely in the form of released dissolved organic carbon (DOC). Here we investigate the role of environmental, seasonal and age-related physiological gradients on the partitioning of net primary production (NPP) into DOC by the canopy forming giant kelp (Macrocystis pyrifera). Rates of DOC production were strongly influenced by an age-related decline in physiological condition (i.

View Article and Find Full Text PDF

Inhibitory and Antioxidant Activities of Extracts Processed by Subcritical Water Extraction and Fermentation.

J Microbiol Biotechnol

August 2025

Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si 17579, Republic of Korea.

Marine algae, notably , are valuable sources of essential nutrients, including carbohydrates, vitamins, and minerals, as well as bioactive compounds, such as phenols and pigments. In this study, subcritical water extraction of , a brown seaweed, was conducted using a 10% (w/v) seaweed slurry at a temperature of 140°C for 10 min. The concentrations of mannitol, laminarin, and total phenolic content were determined to be 18.

View Article and Find Full Text PDF

Cellulases and glucanases can effectively degrade the seaweed polysaccharides, and the resulting oligosaccharides may be subsequently fermented or used as feed additives. To improve the utilization of marine algae, the study identified and characterized Cel5B, a novel bifunctional cellulase-glucanase from Cellulophaga lytica. Phylogenetic tree analysis indicated that Cel5B belongs to the GH5_2 subfamily.

View Article and Find Full Text PDF