Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

* We show that the stable isotope (18)O can be used to trace ozone into different components of the plant-soil system at environmentally relevant concentrations. * We exposed plants and soils to (18)O-labelled ozone and used isotopic enrichment in plant dry matter, leaf water and leaf apoplast, as well as in soil dry matter and soil water, to identify sites of ozone-derived (18)O accumulation. * It was shown that isotopic accumulation rates in plants can be used to infer the location of primary ozone-reaction sites, and that those in bare soils are dependent on water content. However, the isotopic accumulation rates measured in leaf tissue were much lower than the modelled stomatal flux of ozone. * Our new approach has considerable potential to elucidate the fate and reactions of ozone within both plants and soils, at scales ranging from plant communities to cellular defence mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8137.2009.02780.xDOI Listing

Publication Analysis

Top Keywords

stable isotope
8
plants soils
8
dry matter
8
isotopic accumulation
8
accumulation rates
8
ozone
5
isotope approach
4
approach identifies
4
identifies fate
4
fate ozone
4

Similar Publications

Spatiotemporal characteristics, drivers, sources, and health risks of nitrate and sulfate in groundwater on the Chinese Loess Plateau.

Water Res

September 2025

Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China; The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang, 050061, China.

Groundwater nitrate (NO) and sulfate (SO) pollution in semi-arid regions has attracted widespread attention. However, unveiling the dynamics and sources of NO and SO in regional groundwater is challenging because of complex anthropogenic activities and hydrogeological conditions. This study combined physicochemistry and multiple stable isotopes (δH-HO, δO-HO, δN-NO, δO-NO, δS-SO, and δO-SO) to explore the spatiotemporal patterns, driving factors, sources, and potential health hazards of NO and SO in groundwater on the Loess Plateau, China.

View Article and Find Full Text PDF

Unlabelled: Despite stimulating glucagon secretion, the mechanisms by which protein ingestion lowers glucose excursions remain unclear. We investigated this using the triple stable isotope glucose tracer technique to measure postprandial glucose fluxes. Eleven healthy adults completed three trials, ingesting 25 g glucose (25G; 100 kcal), 50 g glucose (50G; 200 kcal), or 25 g glucose plus 25 g whey protein (25WG; 200 kcal).

View Article and Find Full Text PDF

Development of a certified reference material for per- and polyfluoroalkyl substances (PFAS) in textiles.

Anal Bioanal Chem

September 2025

Department of Analytical Chemistry and Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany.

Per- and polyfluoroalkyl substances (PFASs) are a large group of emerging organic pollutants that contaminate the environment, food, and consumer products. Textiles and other outdoor products are a major source of PFAS exposure due to their water-repellent impregnations. Determination of PFASs in textiles is increasingly important for enhancing their contribution to the circular economy.

View Article and Find Full Text PDF

Karst water bodies are vital groundwater resources particularly vulnerable to pollution. Protecting their water quality requires documenting contaminants traditionally associated with anthropogenic activities (metals, nutrients, and fecal indicator bacteria) as well as emerging contaminants, such as antibiotic-resistant organisms (AROs) and perfluoroalkyl substances (PFAS). This study detected contaminants in karst-associated water bodies on the Yucatán Peninsula, including 10 sinkholes (cenotes) and one submarine groundwater discharge (SGD) site.

View Article and Find Full Text PDF

Tissue-specific distribution and trophic transfer of PCBs in marine organisms from the Beibu Gulf, South China Sea: Probabilistic health risk assessment via Monte Carlo simulation.

Ecotoxicol Environ Saf

September 2025

Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.

Despite global phase-out initiatives, legacy polychlorinated biphenyls (PCBs) remobilize in marine ecosystems as secondary emission sources, posing ecotoxicological and human health risks emerge through cross-trophic dietary exposure pathways. This study aimed to systematically examined the distribution, trophic transfer properties, and health risks of PCBs in six fish and eight invertebrate species from the Beibu Gulf in southern China, by stable isotope analysis, hierarchical cluster analysis, and Monte Carlo simulation. The ΣPCBs concentrations ranged from 0.

View Article and Find Full Text PDF