Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The bacterium Bacillus thuringiensis produces ICPs (insecticidal crystal proteins) that are deposited in their spore mother cells. When susceptible lepidopteran larvae ingest these spore mother cells, the ICPs get solubilized in the alkaline gut environment. Of approx. 140 insecticidal proteins described thus far, insecticidal protein Cry1Ac has been applied extensively as the main ingredient of spray formulation as well as the principal ICP introduced into crops as transgene for agricultural crop protection. The 135 kDa Cry1Ac protein, upon ingestion by the insect, is processed successively at the N- and C-terminus by the insect midgut proteases to generate a 65 kDa bioactive core protein. The activated core protein interacts with specific receptors located at the midgut epithilium resulting in the lysis of cells and eventual death of the larvae. A laboratory-reared population of Helicoverpa armigera displayed 72-fold resistance to the B. thuringiensis insecticidal protein Cry1Ac. A careful zymogram analysis of Cry1Ac-resistant insects revealed an altered proteolytic profile. The altered protease profile resulted in improper processing of the insecticidal protein and as a consequence increased the LC50 concentrations of Cry1Ac. The 135 kDa protoxin-susceptible insect larval population processed the protein to the biologically active 65 kDa core protein, while the resistant insect larval population yielded a mixture of 95 kDa and 68 kDa Cry1Ac polypeptides. N-terminal sequencing of these 95 and 68 kDa polypeptides produced by gut juices of resistant insects revealed an intact N-terminus. Protease gene transcription profiling by semi-quantitative RT (reverse transcription)-PCR led to the identification of a down-regulated HaSP2 (H. armigera serine protease 2) in the Cry1Ac-resistant population. Protease HaSP2 was cloned, expressed and demonstrated to be responsible for proper processing of insecticidal protoxin. The larval population displaying resistance to Cry1Ac do not show an altered sensitivity against another insecticidal protein, Cry2Ab. The implications of these observations in the context of the possibility of development of resistance and its management in H. armigera to Cry1Ac through transgenic crop cultivation are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20081152DOI Listing

Publication Analysis

Top Keywords

insecticidal protein
16
core protein
12
larval population
12
protein
9
helicoverpa armigera
8
cry1ac
8
armigera cry1ac
8
bacillus thuringiensis
8
improper processing
8
spore mother
8

Similar Publications

Characterization of the pesticidal crystal toxin protein Cry11Aa from Bacillus thuringiensis serovar israelensis VCRC B646 for mosquito larvae control.

Biotechnol Lett

September 2025

Unit of Microbiology and Immunology, Vector Control Research Centre, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Puducherry, 605006, India.

Effective mosquito control is essential for reducing the transmission of vector-borne diseases. This study focuses on the comprehensive characterization of mosquitocidal toxins produced by Bacillus thuringiensis serovar israelensis (Bti) VCRC B646 and the associated insecticidal genes. The bacterium was cultured, and the spore-crystal complex was purified to identify the mosquitocidal proteins.

View Article and Find Full Text PDF

Proteomic characterization and lethality of the venom of the Black Judean scorpion, Hottentotta judaicus (Buthidae): expanded toxin diversity and revisited toxicological significance.

Arch Toxicol

September 2025

Laboratorio de Proteómica, Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, 11501, Costa Rica.

The scorpion Hottentotta judaicus inhabits the Levant region of the Middle East, including Lebanon, Jordan, Palestine, and Israel. While previous research focused on its insecticidal properties and sodium-channel-targeting toxins, its venom remains largely unexplored using modern proteomic approaches. We analyzed the venom composition of H.

View Article and Find Full Text PDF

The Natural Product Osthole, Known for Its Insecticidal and Antimicrobial Properties, Potentially Binds to Amidase, Offering a Novel Approach for Controlling Tomatoes Gray Mold for the First Time.

Phytopathology

September 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .

View Article and Find Full Text PDF

Background: Bacillus thuringiensis Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores via α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.

Objective: This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.

View Article and Find Full Text PDF

The fall armyworm (Spodoptera frugiperda, FAW) has developed varying degrees of resistance to chlorantraniliprole (CAP). Apoptosis serves as a critical defense mechanism against pesticide stress in insects. Here, we identified a juvenile hormone (JH)-mediated apoptotic pathway through RNA-seq, revealing nine JH-induced apoptosis-related genes (four positively correlated and five negatively correlated).

View Article and Find Full Text PDF