Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A23187, a calcium ionophore, is used to induce Ca(2+)-dependent cell death by increasing intracellular Ca(2+) concentration ([Ca(2+)](i)) under in vitro condition. Since this ionophore also increases membrane permeability of metal divalent cations such as Zn(2+) and Fe(2+) rather than Ca(2+), trace metal cations in cell suspension may affect Ca(2+)-dependent cell death induced by A23187. Therefore, the effects of chelators for divalent metal cations, EDTA and TPEN, on the A23187-induced cytotoxicity were cytometrically examined in rat thymocytes. The cytotoxicity of A23187 was attenuated by 1mM EDTA while it was augmented by 50 microM EDTA and 10 microM TPEN. These changes were statistically significant. The A23187-induced increase in Fluo-3 fluorescence intensity, a parameter for [Ca(2+)](i), was significantly reduced by 1mM EDTA while it was not the case for 50 microM EDTA and 10 microM TPEN. The intensity of FluoZin-3 fluorescence, a parameter for [Zn(2+)](i), increased by A23187 was respectively reduced by 50 microM EDTA and 10 microM TPEN. It is suggested that the attenuation of A23187-induced cytotoxicity by 1mM EDTA is due to the chelation of extracellular Ca(2+) and Zn(2+) while the augmentation by 50 microM ETDA or 10 microM TPEN is due to the chelation of extracellular Zn(2+). The Tyrode's solution without thymocytes contained 32.4 nM of zinc while it was 216.9 nM in the cell suspension. In conclusion, trace Zn(2+), derived from cell preparation, partly attenuates the Ca(2+)-dependent cell death induced by A23187.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2008.12.006DOI Listing

Publication Analysis

Top Keywords

ca2+-dependent cell
16
cell death
16
microm tpen
16
death induced
12
induced a23187
12
1mm edta
12
microm edta
12
edta microm
12
zn2+ derived
8
cell
8

Similar Publications

Ion channels in NK cells: signaling and functions.

J Leukoc Biol

September 2025

Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa de San Sebastián, 28045 Colima, México.

Ion channels are integral membrane proteins which facilitate rapid transport of small ions into and out of the cell and between organelles and cytosol. Cytolytic lymphocytes including natural killer (NK) cells principally kill virus-infected and cancer cells by releasing cytolytic granules within the immunological synapse, formed between target and effector cells. This process strongly depends on Ca2+ signaling, which in human NK cells is controlled by the phospholipase C (PLCγ)/inositol-1,4,5-triphospate receptor (IP3R)/calcium release-activated calcium channel (CRAC) axis.

View Article and Find Full Text PDF

This study investigated the effects of a low-frequency polarized electric field (LFPEF) on postharvest disease resistance and storage quality of grapes. LFPEF treatment (3 h/d) significantly reduced weight loss, suppressed lesion expansion, and maintained fruit firmness by reinforcing cell wall integrity and enhancing defense-related enzyme activities. Mechanistic analyses indicated that LFPEF activated Ca signaling, promoted calcium accumulation, and upregulated calcium sensor genes, thereby contributing to membrane stabilization.

View Article and Find Full Text PDF

Construction of Silver-Calcium Micro-Galvanic Cell on Titanium for Immunoregulation Osteogenesis.

BME Front

September 2025

State Key Laboratory of High Performance Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

This work aims to construct a functional titanium surface with spontaneous electrical stimulation for immune osteogenesis and antibacteria. A silver-calcium micro-galvanic cell was engineered on the titanium implant surface to spontaneously generate microcurrents for osteoimmunomodulation and bacteria killing, which provides a promising strategy for the design of a multifunctional electroactive titanium implant. Titanium-based implants are usually bioinert, which often leads to inflammation-induced loosening.

View Article and Find Full Text PDF

Potential Role of the PGE2-EP4-Ca2+ Signaling Axis in Post-Traumatic Osteoarthritis.

J Vis Exp

August 2025

Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences;

Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease triggered by trauma or intense mechanical stress, leading to joint cartilage degeneration and functional impairment. Prostaglandin E2 (PGE2) contributes significantly to cartilage degradation following mechanical injury by activating its receptor, Prostaglandin E receptor 4 (EP4), on chondrocyte membranes. The homeostasis of articular cartilage primarily relies on the dynamic balance between cartilage degradation and repair, a process finely regulated by chondrocytes.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) functions as an endogenous danger-associated molecular pattern that broadly activates the cGAS-STING pathway to potentiate antitumor immunotherapy. However, inefficient mtDNA release severely limits its ability to robustly activate downstream immune responses. Recent studies reveal that ferroptosis can trigger mtDNA release from damaged mitochondria into the cytosol, thereby stimulating antitumor immunity.

View Article and Find Full Text PDF