98%
921
2 minutes
20
Background/aims: Cyclooxygenase-2 (COX-2) inhibitors reportedly inhibit the growth of hepatocellular carcinoma (HCC) via caspase-dependent or caspase-independent apoptosis, which is due to COX-2 being associated with hepatocarcinogenesis. Survivin is highly expressed in most human cancers, but the mechanism regulating survivin expression remains unclear. We investigated the regulatory expression of survivin in selective-COX-2-inhibitor-induced growth inhibition of hepatoma cells.
Methods: After treatment with NS-398 (a selective COX-2 inhibitor) at various concentrations (10, 50, 100, 150, and 200 micrometer), the growth inhibition of Hep3B hepatoma cells was assessed by an MTT cell-viability assay, DNA fragmentation gel analysis, and flow cytometry. The expression of survivin transcript was analyzed by reverse-transcription polymerase chain reactions.
Results: NS-398 inhibited the growth of hepatoma cells by an amount dependent on the concentration and the time since treatment. Apoptotic DNA ladder and flow-cytometry shifting to the sub-G1 phase were revealed in NS-398-induced growth inhibition of hepatoma cells. NS-398 suppressed the expression of the survivin gene in a concentration- and time-dependent manner.
Conclusions: Survivin was down-regulated in the growth inhibition of hepatoma cells induced by a selective COX-2 inhibitor, NS-398, in a concentration- and time-dependent manner. These results suggest the therapeutic inhibition of COX-2 via suppression of survivin in HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3350/kjhep.2008.14.3.351 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.
View Article and Find Full Text PDFInt Microbiol
September 2025
Department of Microbiology, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
Biofilm formation and other virulence phenotypes under quorum sensing regulation play a vital role in the pathogenicity of Aeromonas hydrophila, triggering the emergence of multi-drug resistance (MDR) which increases fish mortality, environmental issues, and economic loss in aquaculture, necessitating the discovery of novel drugs to bypass standard antibiotics. Here, quorum quenching (QQ) may be a sustainable anti-virulent approach. β-Lactamase enzyme obtained from Chromohalobacter sp.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Dr. B. R. Ambedkar Centre for Biomedical Research North Campus , University of Delhi, 110007, Delhi, India.
Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.
View Article and Find Full Text PDFArch Microbiol
September 2025
College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
Klebsiella oxytoca is a N-fixing bacterium whose nif (nitrogen fixation) gene expression is controlled by the two antagonistic regulatory proteins NifA and NifL encoded by the nifLA operon. NifA is a transcriptional activator, while NifL inhibits the transcriptional activity of NifA. In order to develop an improved K.
View Article and Find Full Text PDFBiomacromolecules
September 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
Triple-negative breast cancer (TNBC) remains a formidable clinical challenge due to its aggressive behavior, lack of therapeutic targets, and poor prognosis. The PI3K/AKT/mTOR pathway is highly activated in TNBC, making it a promising therapeutic target. Conventional PEGylated nanocarriers often face challenges, such as accelerated blood clearance and lysosomal trapping.
View Article and Find Full Text PDF