98%
921
2 minutes
20
Platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) plays a critical role in inflammatory disorders including experimental allergic encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Although PAF accumulation in the spinal cord (SC) of EAE mice and cerebrospinal fluid of MS patients has been reported, little is known about the metabolic processing of PAF in these diseases. In this study, we demonstrate that the activities of phospholipase A(2) (PLA(2)) and acetyl-CoA:lyso-PAF acetyltransferase (LysoPAFAT) are elevated in the SC of EAE mice on a C57BL/6 genetic background compared with those of naive mice and correlate with disease severity. Correspondingly, levels of groups IVA, IVB, and IVF cytosolic PLA(2)s, group V secretory PLA(2), and LysoPAFAT transcripts are up-regulated in the SC of EAE mice. PAF acetylhydrolase activity is unchanged during the disease course. In addition, we show that LysoPAFAT mRNA and protein are predominantly expressed in microglia. Considering the substrate specificity and involvement of PAF production, group IVA cytosolic PLA(2) is likely to be responsible for the increased PLA(2) activity. These data suggest that PAF accumulation in the SC of EAE mice is profoundly dependent on the group IVA cytosolic PLA(2)/LysoPAFAT axis present in the infiltrating macrophages and activated microglia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.181.7.5008 | DOI Listing |
Int J Biol Macromol
September 2025
Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China; Center for Supramolecular Chemical Biology, Jilin University, Changchun, 130012, China. Electronic address:
Multiple sclerosis is an autoimmune demyelinating disease, and its effective treatment is a great challenge. As a typical animal model for studying multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) is characterized by inflammation, demyelination, gliosis and axonal loss. Thus, simultaneous regulation of neuroinflammation and remyelination may be a useful strategy against EAE.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Immunology, University of Oldenburg, Oldenburg 26129, Germany.
Environmental stimuli, including the exposure to ultraviolet (UV)-B light, are known to play a role in the modulation of immune-mediated mechanisms in multiple sclerosis (MS). In experimental autoimmune encephalomyelitis (EAE), we have shown that UV-B irradiation ameliorates disease outcome by regulatory T cells (Treg) expansion. Moreover, the UV-B-mediated induction of Treg numbers was also observed in MS.
View Article and Find Full Text PDFFront Immunol
August 2025
Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, UT, United States.
Background: Bispecific killer engagers (BiKEs), which harness natural killer cells to deplete target cells, have garnered success in ablating tumor cells but have not been well explored in eliminating primary cells, such as effector cells in autoimmune diseases. Previously, we reported a BiKE that targeted human lymphocytes expressing programmed death-1 (PD-1). The BiKE was shown to promote NK cell-mediated depletion of PD-1+ cells in vitro.
View Article and Find Full Text PDFSci Transl Med
August 2025
Univ Toulouse, INSERM, CNRS, Infinity, Toulouse, France.
Follicular regulatory T cells (T cells) constitute a subset of regulatory T cells pivotal to the immune response in germinal centers (GCs) that inhibit autoantibody production. Their role, however, remains ill-defined in autoimmune diseases like multiple sclerosis (MS) and its murine model, experimental autoimmune encephalomyelitis (EAE), which are neuroinflammatory diseases driven by T and B cells. Here, we quantified peripheral blood immune subpopulations in two cohorts of patients with MS and found higher circulating T cell frequencies in patients in relapse compared with patients in remission.
View Article and Find Full Text PDFAnat Cell Biol
August 2025
College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Korea.
We examined the expression and localization of osteopontin (OPN) in various organs in mice with experimental autoimmune encephalomyelitis (EAE). To evaluate the level of OPN in blood and various tissues, enzyme-linked immunosorbent assay and western blot analysis of OPN were performed. The serum level of OPN was significantly increased in mice with EAE, and OPN was upregulated in all tissues examined, including the liver, kidneys, intestines, and spinal cord.
View Article and Find Full Text PDF