Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters.

Microb Ecol

Laboratory of Aquatic Photobiology and Plankton Ecology, Institute of Ecology, University of Innsbruck, 6020, Innsbruck, Austria.

Published: May 2009


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The occurrence of bloom-forming cyanobacteria is one of the most obvious sign of eutrophication in freshwaters. Although in eutrophic lakes water transparency in the ultraviolet (UV) region is strongly reduced, bloom-forming cyanobacteria are exposed to high solar UV radiation at the surface. Here, we show that, in a natural phytoplankton community from a very eutrophic lake, Microcystis synthesizes UV sunscreen compounds identified as mycosporine-like amino acids (MAAs). The biomass-specific MAA concentration was significantly correlated with the occurrence of Microcystis but not with other algal groups, even though they were dominant in terms of biomass. Based on a photo-optical model, we estimated that the maximum MAA concentration per cell observed (2.5% dry weight) will confer only approximately 40% of internal screening to a single layer of Microcystis cells. Thus, the formation of a colony with several layers of cells is important to afford an efficient UV screening by internal self-shading. Overall, we propose that Microcystis uses a combination of photoprotective strategies (MAAs, carotenoids) to cope with high solar UV radiation at the water surface. These strategies include also the screening of UV radiation by D-galacturonic acid, one of the main chemical components of the slime layer in Microcystis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-008-9425-4DOI Listing

Publication Analysis

Top Keywords

radiation surface
8
bloom-forming cyanobacteria
8
high solar
8
solar radiation
8
maa concentration
8
layer microcystis
8
microcystis
6
multiple strategies
4
strategies bloom-forming
4
bloom-forming microcystis
4

Similar Publications

The physical environment exerts a profound influence on microbial life. The directional movement of cells in response to their physical environment is understood as taxis, which has been studied in biology as chemotaxis, phototaxis, gravitaxis and so forth. These taxis are induced by physiological, physical or both factors.

View Article and Find Full Text PDF

Ni-Mediated High-Spin Iron(III) for Boosting Electrocatalytic NO to Oxime Conversion.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, LIFM, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.

Oximes serve as indispensable intermediates in synthetic chemistry, owing to their distinctive C═N─OH structure, conferring highly versatile reactivity. Synthesis of oxime via the electrochemical method has potential advantages, accompanied by the upgrading of industrialization. Herein, we propose a novel strategy by introducing nickel (Ni) mediation to obtain high-spin iron (Fe)(III) in phthalocyanine structure for synthesizing glyoxylate oxime via electrocatalytic nitric oxide (NO) coupling with keto acid.

View Article and Find Full Text PDF

Scalable Photothermal Superhydrophobic Deicing Coating with Mechanochemical-Thermal Robustness.

ACS Appl Mater Interfaces

September 2025

Department of Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.

Developing scalable and robust deicing coatings is essential for real-world applications, yet current coatings either suffer from intrinsic fragility or low thermal conductivity, limiting sustainability and deicing effectiveness. Here, we report a scalable and durable photothermal superhydrophobic coating coupling with enhanced thermal conductivity, engineered by embedding carbon nanotubes within a perfluoroalkoxy polymer matrix. Our design achieved 97.

View Article and Find Full Text PDF

The Electronic Structure of Palladium on Magnetoelectric CrO(0001).

J Phys Condens Matter

September 2025

Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska-Lincoln, Jorgensen Hall, 855 North 16th Str., NE 68588-0299, Lincoln, Nebraska, 68588-0007, UNITED STATES.

The band structure of ultrathin Pd(111) thin films grown on the CrO(0001) surface was studied by angular-resolved photoemission spectroscopy (ARPES) combined with first-principles calculations. The CrO(0001) interface and the expanded Pd lattice constant appears to significantly affect the occupied band structure of an ultrathin palladium film. A characteristic band splitting is seen in the experimental occupied electronic structure, forming a hexagonal pattern approximately half-way from the Γ" point to the surface Brillouin zone boundary.

View Article and Find Full Text PDF

The contamination of dental curing light tips was evaluated before and after treatment and after their use and disinfection. The influence of a plastic protective barrier over the flexural strength and the modulus of elasticity of resin composites were also analyzed. Microbiological sampling was conducted at initial contamination (T0), in Log 10 CFU/4 mL; after dental treatment (T1); and after disinfection with 70% ethanol (v/v) (T2).

View Article and Find Full Text PDF