Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A reconfigurable optical logic unit that can execute any binary logic and arithmetic operation on the same hardware with different configurations is proposed. The design, based on cascaded terahertz optical asymmetric demultiplexer switches, introduces reconfigurability with the help of electro-optic switches. The model is simple and practicable.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.47.003737DOI Listing

Publication Analysis

Top Keywords

reconfigurable optical
8
optical logic
8
logic unit
8
terahertz optical
8
optical asymmetric
8
asymmetric demultiplexer
8
electro-optic switches
8
unit terahertz
4
demultiplexer electro-optic
4
switches reconfigurable
4

Similar Publications

Reconfigurable nonlinear Pancharatnam-Berry diffractive optics with photopatterned ferroelectric nematics.

Light Sci Appl

September 2025

National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China.

Planar optical elements incorporating space-varying Pancharatnam-Berry phase have revolutionized the manipulation of light fields by enabling continuous control over amplitude, phase, and polarization. While previous research focusing on linear functionalities using apolar liquid crystals (LCs) has attracted much attention, extending this concept to the nonlinear regime offers unprecedented opportunities for advanced optical processing. Here, we demonstrate the reconfigurable nonlinear Pancharatnam-Berry LC diffractive optics in photopatterned ion-doped ferroelectric nematics.

View Article and Find Full Text PDF

Optically Controlled Memristor Enabling Synergistic Sensing-Memory-Computing for Neuromorphic Vision Systems.

Adv Mater

September 2025

Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, 071002, China.

Neuromorphic Visual Devices hold considerable promise for integration into neuromorphic vision systems that combine sensing, memory, and computing. This potential arises from their synergistic benefits in optical signal detection and neuro-inspired computational processes. However, current devices face challenges such as insufficient light/dark resistance ratios, mismatched transient photo-response, and volatile retention characteristics, limiting their adaptability to complex artificial vision systems.

View Article and Find Full Text PDF

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF

Tunable Optical Metamaterial Enables Steganography, Rewriting, and Multilevel Information Storage.

Nanomicro Lett

September 2025

State Key Laboratory of Robotics and Intelligent Systems, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China.

In the realm of secure information storage, optical encryption has emerged as a vital technique, particularly with the miniaturization of encryption devices. However, many existing systems lack the necessary reconfigurability and dynamic functionality. This study presents a novel approach through the development of dynamic optical-to-chemical energy conversion metamaterials, which enable enhanced steganography and multilevel information storage.

View Article and Find Full Text PDF

Nonlinear optoelectronic engine drives monolithic integrated photonic computing.

Light Sci Appl

September 2025

Institute of Intelligent Photonics, Nankai University, Tianjin, China.

The rapidly growing computational demands of artificial intelligence (AI) and complex optimization tasks are increasingly straining conventional electronic architectures, driving the search for novel, energy-efficient processing paradigms. Photonic computing, which harnesses the unique properties of light to perform computation, has emerged as a compelling alternative. This perspective highlights a key advancement: a versatile nonlinear optoelectronic engine based on integrated photodetectors and micro-ring modulators (PD + MRM).

View Article and Find Full Text PDF