Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stem cell-mediated root regeneration offers opportunities to regenerate a bio-root and its associated periodontal tissues to restore tooth loss. Periodontal ligament (PDL) and cementum complex and dentin pulp complex have been tissue engineered using human dental pulp stem cells and PDL stem cells, respectively. The aim of this study was to explore whether dentin formation could be induced using an inductive substrate and whether bioengineered dentin could induce cementum and PDL formation. First, dentin was bioengineered from tooth papillae of Sprague-Dawley (SD) rats with an inductive substrate, and its phenotype was characterized; then primarily cultured human PDL cells were seeded on the surface of dentin and transplanted under the skin of immunocompromised mice. Histological, immunohistochemical, and scanning electronic microscopy examinations results showed that bioengineered dentin could induce cementogenesis and PDL formation, and condense PDL arranged perpendicularly on the dentin surface via a layer of cementum-like tissue. The results indicated that tissue-engineered dentin could be induced using an inductive substrate and could be used as a further substrate for cementum and PDL tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.tea.2007.0268DOI Listing

Publication Analysis

Top Keywords

bioengineered dentin
12
inductive substrate
12
dentin
9
formation induced
8
stem cells
8
induced inductive
8
dentin induce
8
cementum pdl
8
pdl formation
8
pdl
7

Similar Publications

Cathepsin K and glycosaminoglycans differentially regulate matrix metalloproteinase activity in dentin under various pH conditions.

Int J Biol Macromol

September 2025

Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China; Research Center of Dental Esthetics and B

This study examined the pH-dependent (3, 5, and 7) regulation of matrix metalloproteinase (MMP) activity by cathepsin K (catK) and glycosaminoglycans (GAGs) using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fluorescence assays, and human dentin slice experiments. The direct effects of catK were evaluated in the catK-active, catK-deficient, and odanacatib (ODN)-inhibited groups, whereas indirect GAG/ tissue inhibitor of metalloproteinase (TIMP)-mediated regulation was assessed in the catK-active, ODN-inhibited, and chondroitin sulfate (CS)-treated groups through dimethylmethylene blue (DMMB) assays, in situ zymography, and immunofluorescence staining. CatK directly activated MMP-2 (62 kDa) and MMP-9 (82 kDa) at all pH values, with no activation observed in the ODN-inhibited or catK-deficient groups.

View Article and Find Full Text PDF

Human and mouse incisors are both primarily composed of dentin and enamel, which meet at an interface called the dentin-enamel junction (DEJ). However, incisors in the two species have very different growth patterns, structures, and loading requirements. Since the DEJ is responsible for minimizing cracking at this at-risk interface between mechanically dissimilar dentin and enamel, its structure is expected to be significantly different between humans and mice.

View Article and Find Full Text PDF

Regenerative endodontics has emerged as a promising and recognized approach for treating necrotic young permanent teeth. Based on advanced tissue engineering strategies, regenerative therapies, such as cell homing and cell-based transplantation, have been extensively investigated to achieve functional regeneration of the injured pulp-dentin complex. Injectable, thermo-responsive, and tailor-made 3D-printed scaffolds that carry antimicrobial, anti-inflammatory, and other signaling cues provide a powerful means of delivering drugs precisely within the narrow, branching anatomy of the root canal.

View Article and Find Full Text PDF

Background: Gingival recession is a common condition involving apical displacement of the gingival margin, leading to root surface exposure and associated complications such as dentin hypersensitivity and root caries. Among the most effective treatment options are the tunneling technique (TUN) and the coronally advanced flap (CAF), both combined with connective tissue grafts (CTGs). This study aimed to evaluate and compare the clinical outcomes of TUN + CTG and CAF + CTG in terms of root coverage and keratinized tissue width (KTW) over a 6-12-month follow-up.

View Article and Find Full Text PDF

Objectives: Bacterial-derived secondary caries is a primary cause of dental treatment failure at the artificial material-tissue interface. We previously developed ultra-long-term antimicrobial/antidegradative drug-silica particles (DSPs) to counter this interfacial failure. The aim of the current study was to evaluate a novel DSP-filled-adhesive system via in vitro and in vivo (rat) anti-secondary-caries studies.

View Article and Find Full Text PDF