Nudel binds Cdc42GAP to modulate Cdc42 activity at the leading edge of migrating cells.

Dev Cell

Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.

Published: March 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cdc42GAP promotes inactivation of Cdc42, a small GTPase whose activation at the leading edge by guanine nucleotide exchange factors is critical for cell migration. How Cdc42GAP is regulated to ensure proper levels of active Cdc42 is poorly understood. Here we show that Nudel, a cytoplasmic dynein regulator, competes with Cdc42 for binding Cdc42GAP. Consequently, Nudel can inhibit Cdc42GAP-mediated inactivation of Cdc42 in a dose-dependent manner. Both Nudel and Cdc42GAP exhibit leading-edge localization in migrating cells. The localization of Nudel requires its phosphorylation by Erk1/2. Depleting Nudel by RNAi or overexpression of a nonphosphorylatable mutant abolishes Cdc42 activation and cell migration. Our data thus uncover Nudel as a regulator of Cdc42 during cell migration. Nudel facilitates cell migration by sequestering Cdc42GAP at the leading edge to stabilize active Cdc42 in response to extracellular stimuli. Excess active Cdc42 may in turn control its own activity by recruiting Cdc42GAP from Nudel.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2008.01.001DOI Listing

Publication Analysis

Top Keywords

cell migration
16
leading edge
12
active cdc42
12
nudel
9
cdc42
9
migrating cells
8
inactivation cdc42
8
cdc42gap
7
nudel binds
4
binds cdc42gap
4

Similar Publications

Engineering resistance genes against tomato brown rugose fruit virus.

Sci China Life Sci

September 2025

MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Tomato brown rugose fruit virus (ToBRFV) overcomes all known tomato resistance genes, including the durable Tm-2, posing a serious threat to global tomato production. Here, we employed in vitro random mutagenesis to evolve the Tm-2 leucine-rich repeat (LRR) domain and screened ∼8,000 variants for gain-of-function mutants capable of recognizing the ToBRFV movement protein (MP) and triggering hypersensitive cell death. We identified five such mutants.

View Article and Find Full Text PDF

Integrins from extracellular vesicles as players in tumor microenvironment and metastasis.

Cancer Metastasis Rev

September 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.

Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.

View Article and Find Full Text PDF

Durotaxis is a driver and potential therapeutic target in lung fibrosis and metastatic pancreatic cancer.

Nat Cell Biol

September 2025

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.

View Article and Find Full Text PDF

Silencing CD151 Gene in Donor Triple-Negative Breast Cancer Cells Attenuates Exosome-Driven Functions of Recipient Cells.

Exp Cell Res

September 2025

Cancer Biology Laboratory, Dept of Life Sciences, GITAM School of Sciences, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India. Electronic address:

CD151 is a tetraspanin, abnormally expressed in triple negative breast cancer (TNBC). It is a prominent component of exosomes, facilitating the secretion of proteins that promote metastasis and drug resistance. We have previously demonstrated that silencing the CD151 gene reduces metastasis in TNBC.

View Article and Find Full Text PDF

Novel role of MKRN2 in regulating tumor growth through host microenvironment and macrophage M1 to M2 switch.

Cancer Lett

September 2025

State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, Department of Radiology, Department of Clinical Research and Translational Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou,

The tumor microenvironment (TME) plays a pivotal role in cancer progression, though the molecular regulators governing its immunosuppressive properties remain incompletely characterized. In this study, we identify Makorin-2 (MKRN2) as a novel modulator of TME remodeling through integrated analyses of genetically engineered mouse models and human clinical data. Utilizing MKRN2 knockout mice, we observed significantly accelerated tumor growth compared to wild-type control, which was associated with profound alterations in immune cell composition, especially M2 macrophages.

View Article and Find Full Text PDF