98%
921
2 minutes
20
To achieve a deeper knowledge on the function of HAL1 gene in tomato (Solanum lycopersicum) plants submitted to salt stress, in this study, we studied the growth and physiological responses to high salt stress of T3 transgenic plants (an azygous line without transgene and both homozygous and hemizygous lines for HAL1) proceeding from a primary transformant with a very high expression level of HAL1 gene. The homozygous plants for HAL1 gene did not increase their salt tolerance in spite of an earlier and higher reduction of the Na(+) accumulation in leaves, being moreover the Na(+) homeostasis maintained throughout the growth cycle. The greater ability of the homozygous line to regulate the Na(+) transport to the shoot to long term was even shown in low accumulation of Na(+) in fruits. By comparing the homozygous and hemizygous lines, a higher salt tolerance in the hemizygous line, with respect to the homozygous line, was observed on the basis of fruit yield. The Na(+) homeostasis and osmotic homeostasis were also different in homozygous and hemizygous lines. Indeed, the Na(+) accumulation rate in leaves was greater in hemizygous than in homozygous line after 35 days of 100 mM NaCl treatment and only at the end of growth cycle did the hemizygous line show leaf Na(+) levels similar to those found in the homozygous line. With respect to the osmotic homeostasis, the main difference between lines was the different contribution of inorganic and organic solutes to the leaf osmotic balance. Taken together, these results suggest that the greater Na(+) exclusion ability of the homozygous line overexpressing HAL1 induces a greater use of organic solutes for osmotic balance, which seems to have an energy cost and hence a growth penalty that reverts negatively on fruit yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1399-3054.2008.01060.x | DOI Listing |
Plant Sci
September 2025
Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello15/a, 10135 Turin, Italy.
Cerium (Ce), the most abundant of the rare Earth elements (REEs), is increasingly recognized as an environmental contaminant due to its growing applications in various industrial and agricultural sectors. This study investigates the physiological, biochemical, and molecular responses of Brassica rapa L. plants to varying concentrations of Ce exposure to elucidate its effects on plant growth, metabolism, and stress responses.
View Article and Find Full Text PDFBehav Brain Res
September 2025
Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China. Electronic address:
Glutamate-mediated excitotoxicity represents a common pathomechanism in neurological disorders. As the predominant glutamate transporter in the central nervous system, glutamate transporter 1 (GLT-1, known as EAAT2 in humans) plays a crucial role in maintaining glutamate homeostasis and preventing excitotoxicity through its Na⁺-dependent transport mechanism. Key functions of GLT-1 include reducing extracellular glutamate concentration, regulating calcium homeostasis, suppressing oxidative stress, preserving mitochondrial integrity, and modulating neuroinflammatory processes by limiting microglial activation.
View Article and Find Full Text PDFJ Dairy Sci
September 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China. Electronic address:
Subclinical ketosis (SCK) in periparturient cows is associated with gut microbiota dysbiosis and energy metabolism disorders. Although in vitro studies show that free fatty acids (FFA) and BHB impair polymorphonuclear neutrophil (PMN) functions-potentially causing secondary infections-limited in vivo evidence exists. Astragalus polysaccharides (APS) modulate metabolism, immunity, and gut microbiota, but their effects on PMN functions and gut microbiota in SCK cows remain unclear.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2025
Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.
Mild traumatic brain injury (mTBI) is a prevalent yet often overlooked public health concern due to the absence of detectable abnormalities on CT or conventional MRI scans. Approximately 18.3%-31.
View Article and Find Full Text PDFJ Integr Plant Biol
September 2025
Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.
Hyperosmolality-triggered physiological drought hinders plant growth and development, leading to a drop in crop yields. Hyperosmolality triggers calcium signaling, and yet how osmotic-induced calcium signaling participates in cellular osmotic response remains enigmatic. To date, several Ca channels and transporters have been identified to regulate osmotic-induced calcium signal generation (CaSG) or Ca homeostasis.
View Article and Find Full Text PDF