Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Amyloid beta (Abeta) peptide amyloidogenesis, involving the formation of numerous distinct quaternary structures, appears to cause Alzheimer's disease. However, the precise identification of the toxic structure(s) and the neurotoxicity mechanism(s) remains elusive. Mutating the Abeta 1-40 Phe19-Phe20 backbone amide bond to an isostructural E-olefin bond enables formation of spherical aggregates to the exclusion of detectable amyloid fibrils. Herein, the fibrillization and toxicity of amide-to-ester mutants of Abeta 1-40 at the 19-20 position and surrounding backbone amide bonds are compared to the fibrillization and toxicity of the 19-20 E-olefin Abeta analogue and wild type Abeta. Whereas isostructural amide-to-E-olefin mutations eliminate both the H-bond donor and acceptor capabilities, isostructural amide-to-ester mutations eliminate the donor while retaining the ester carbonyl as a weakened acceptor. None of the amide-to-ester Abeta 1-40 mutants prevent fibrillization; in fact several exhibit hastened amyloidogenesis. The 18-19 amide-to-ester substitution is the only backbone mutation within the hydrophobic core region of the fibril (residues 17-21) that significantly slows fibrillization. Despite forming different morphologies, the 19-20 E-olefin mutant, the 18-19 amide-to-ester mutant, and WT Abeta 1-40 fibrils all exhibit similar toxicities when applied to PC12 cells at 18 h into the aggregation reactions, as assessed by MTT metabolic activity measurements. This result suggests that a common but low abundance aggregate morphology, that is accessible to these Abeta analogues, mediates toxicity, or that several different aggregate morphologies are similarly toxic.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi701757vDOI Listing

Publication Analysis

Top Keywords

abeta 1-40
16
backbone mutation
8
aggregate morphologies
8
abeta
8
backbone amide
8
fibrillization toxicity
8
19-20 e-olefin
8
mutations eliminate
8
18-19 amide-to-ester
8
amide-to-ester
5

Similar Publications

Hydrophilicity-Driven Modulation of Amyloid-β(1-40) Fibrillation by Engineered Nanomaterials.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.

Amyloid-β (Aβ) fibrillation is a spontaneous, thermodynamic process governed by nucleation and elongation. While many studies have explored the ability of engineered nanomaterials (ENMs) to modulate Aβ fibrillation, such as inhibitors, promoters, and dual-modulators, the key physicochemical property of ENMs that determines this behavior remains unclear. In this study, we developed a comprehensive library of ENMs with well-controlled physicochemical properties, including surface charges, morphologies, and hydrophilicity, to systematically investigate their effects on Aβ40 fibrillation.

View Article and Find Full Text PDF

New Insights into the Structural Rearrangement and Aggregation Properties of Aβ-PrP Cross-Seeding Modulated by Histidine Behaviors.

ACS Chem Neurosci

September 2025

School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.

Histidine behavior plays a pivotal role in protein folding and misfolding; yet, its influence on cross-seeding during the nucleation phase remains poorly understood. The current study investigates the role of histidine behavior on the structural and aggregation properties during the cross-seeding of Aβ(1-40) and PrP(106-126) peptides. Our findings reveal that all systems tend to form dimeric structures.

View Article and Find Full Text PDF

Objective: Plasma biomarkers of Alzheimer's disease (AD) pathology are frequently tested in specialized research settings, limiting generalizability of findings. Using electronic health records and banked plasma, we evaluated plasma biomarkers - phosphorylated tau 217 (p-tau), β-amyloid 1-42/1-40 (Aβ/Aβ) and p-tau/Aβ - in a real-world, diverse clinical population with multimorbidities.

Methods: Participants (n=617; 44% Black/African American; 41% female) were selected from the University of Pennsylvania Medicine BioBank with plasma assayed using Fujirebio Lumipulse.

View Article and Find Full Text PDF

Redox reactivities of membrane-bound amyloid-β-Cu complexes and their targeting by metallothionein-3.

Free Radic Biol Med

August 2025

Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA. Electronic address:

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β peptide (Aβ) in the central nervous system (CNS). Copper coordination to Aβ triggers Aβ aggregation and promotes the catalytic generation of reactive oxygen species (ROS). Due to its amphiphilic nature, Aβ can interact with cell membranes and compromise their integrity.

View Article and Find Full Text PDF

Amyloid-beta (Aβ) peptides, primarily Aβ40 and Aβ42, are central to the formation of amyloid plaques, a pathological hallmark of Alzheimer's disease (AD). These peptides, derived from the amyloid precursor protein (APP), are aggregation prone and neurotoxic. Experimental studies aimed at understanding Aβ aggregation and interaction require pure, monomeric peptides with the native sequences, including the absence of an N-terminal methionine.

View Article and Find Full Text PDF