Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Centromeres are the fragments of DNA that are responsible for proper chromosome segregation. They consist of centromeric chromatin surrounded by blocks of pericentric heterochromatin, playing an important role in centromere function. In somatic cells, the pericentric domains have a specific pattern of epigenetic modifications of core histones and contain specific pericentric proteins. These features are probably more important for the centromere function than the sequence of the centromeric DNA itself. In somatic cells, the HP1alpha and HP1beta proteins are indispensable for constitutive heterochromatin formation and maintenance. We have analyzed the localization of these proteins in the primordial, growing, fully-grown, and maturing mouse oocytes. Additionally, we have analyzed post-translational modifications of histone H3, which can influence HP1alpha and HP1beta association with the heterochromatin. We showed that the regions of constitutive heterochromatin have a distinct pattern of histone H3 acetylation and di-, and trimethylation of its lysine 9. We demonstrated that HP1beta protein was present in pericentric chromatin domains in primordial oocytes, growing (transcriptionally active) oocytes, and in fully-grown oocytes, and was released to the cytoplasm after germinal vesicle breakdown. In contrast, the HP1alpha was never detected in primordial oocytes, was first detected in pericentric heterochromatin in growing oocytes, dissociated from pericentric heterochromatin in fully-grown oocytes, and it was never detected in maturing oocytes. The presence of HP1alpha and HP1beta proteins on the heterochromatin of transcriptionally active oocytes and their absence in transcriptionally silent oocytes suggest that they are necessary for the repression of RNA synthesis in heterochromatin domains of transcribing oocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrd.20772DOI Listing

Publication Analysis

Top Keywords

hp1alpha hp1beta
16
constitutive heterochromatin
12
hp1beta proteins
12
pericentric heterochromatin
12
oocytes
11
pattern histone
8
heterochromatin
8
centromere function
8
somatic cells
8
primordial oocytes
8

Similar Publications

Diverse epigenetic regulatory mechanisms ensure and regulate cellular diversity. Among others, the histone 3 lysine 9 me3 (H3K9me3) post translational modification participates in silencing lineage-inappropriate genes. H3K9me3 restricts access of transcription factors and other regulatory proteins to cell-fate controlled genes.

View Article and Find Full Text PDF

DNA replication causes the dilution of parental histones along with their specific post-translational modifications. The kinetics of restoring these marks on newly incorporated histones dictate how quickly genomic domains regain their epigenetic identity after replication. H3K9me3 is restored extremely slowly; the process of reconstitution, to achieve the pre-replication levels, continues throughout the following G1 phase.

View Article and Find Full Text PDF

TRIM66-HP1γ remodels the chromatin through phase separation.

Biophys Rep

February 2025

Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.

Chromatin contains not only heterochromatin (HC) and euchromatins (EC) but also facultative heterochromatin (fHC), which experience the dynamic remodeling between HCs and ECs by different regulators. The regulation of fHCs involves lots of different cell functions, like genomic stability and gene transcription. Heterochromatin protein 1 (HP1) recognizes methylated H3K9 and reshapes the chromatin into the fHCs through liquid-liquid phase separation (LLPS).

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Heterochromatin protein 1 alpha (HP1α) is an evolutionarily conserved protein that binds chromatin and is important for gene silencing. The protein comprises 191 residues arranged into three disordered regions and two structured domains, the chromo and chromoshadow domain, which associates into a homodimer. While high-resolution structures of the isolated domains of HP1 proteins are known, the structural properties of full-length HP1α remain largely unknown.

View Article and Find Full Text PDF