Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Use high-resolution genome analysis to clarify the genomic integrity in a fetus with a cytogenetically balanced translocation t(2;9)(q11.2;q34.3).

Methods: High resolution molecular cytogenetic analyses including G-banded chromosome analysis, fluorescence in situ hybridization (FISH), and array-comparative genomic hybridization (CGH) were performed on cultured cells, and DNA extracted from chorionic villus sample (CVS), amniotic fluid cells and fetal tissue. In addition, a custom fosmid-based tiling path 9q34.3 microarray with a resolution of 35-40 kb was used for array-CGH.

Results: GTG-banding analysis showed an apparently balanced de novo translocation between the long arms of chromosomes 2 and 9; t(2;9)(q11.2;q34.3). Array-CGH using a targeted chromosomal microarray analysis (CMA) uncovered a submicroscopic deletion of the subtelomeric region of 9q34.3 revealing the unbalanced nature of the rearrangement. These results were confirmed independently by FISH. The deletion was delimited to 2.7 Mb in size using the 9q34.3 fosmid-based tiling path array-CGH.

Conclusion: Array-CGH is a powerful tool for rapid detection of genomic imbalances associated with microdeletion/duplication syndromes and for the evaluation of de novo apparently balanced translocation to enable high-resolution genomic analysis at the breakpoints. Prenatal diagnosis of chromosomal rearrangements involving dosage-sensitive genomic regions is an important adjuvant to prenatal care and provides more accurate information for counseling and informed decision making.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pd.1841DOI Listing

Publication Analysis

Top Keywords

balanced translocation
12
prenatal diagnosis
8
fosmid-based tiling
8
tiling path
8
analysis
5
genomic
5
9q343
4
diagnosis 9q343
4
9q343 microdeletion
4
microdeletion array-cgh
4

Similar Publications

Aims: The clusterin (CLU) gene is genetically associated with Alzheimer's disease (AD), and CLU levels have been shown to positively correlate with regional Aβ deposition in the brain, including in arteries from cerebral amyloid angiopathy (CAA) patients. CLU has also been shown to alter the aggregation, toxicity and blood-brain barrier transport of amyloid beta (Aβ) and has therefore been suggested to play a key role in regulating the balance between Aβ deposition and clearance in both the brain and cerebral blood vessels. However, it remains unclear whether the role of clusterin in relation to Aβ deposition is protective or pathogenic.

View Article and Find Full Text PDF

Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.

View Article and Find Full Text PDF

The B cell dilemma: Diversity or fidelity?

DNA Repair (Amst)

August 2025

Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Laboratory of Genome Diversification & Integrity, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany. Electronic address:

The ability of B lymphocytes to diversify immunoglobulin (Ig) genes is central to the generation of high-affinity, class-switched antibodies and the establishment of effective humoral immunity. This diversification is achieved through three DNA remodeling processes that occur at defined stages of B cell development and maturation: V(D)J recombination, somatic hypermutation (SHM), and class switch recombination (CSR). These reactions all rely on the induction of programmed DNA lesions at Ig genes and their productive resolution by ubiquitous DNA repair pathways.

View Article and Find Full Text PDF

Stomatin is a ubiquitous and highly expressed protein in erythrocytes, which associates with cholesterol-rich microdomains in the plasma membrane and is known to regulate the activity of multiple ion channels and transporters, but the structural basis of association with stomatin targets remains unknown. Here we describe high-resolution structures of multiple stomatin complexes with endogenous binding partners isolated from human erythrocyte membranes, revealing that stomatin specifically associates with two membrane proteins involved in water transport and cell volume regulation, aquaporin-1 (AQP-1) and the urea transporter, UT-B (SLC14A1). Together, our results reveal the structural basis of stomatin oligomerization, membrane association, and target recruitment, and identify a putative role for stomatin in the regulation of osmotic balance in the erythrocyte.

View Article and Find Full Text PDF

O-GlcNAcylation: A molecular switch linking brain health to neurodegeneration.

Neural Regen Res

September 2025

College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, China.

Neurodegenerative disorders are typically caused by harmful protein accumulation and nerve cell damage. A post-translational modification called O-linked N-acetylglucosamine ylation acts as a critical regulator in these disorders by controlling protein behavior, cell signaling, and energy balance. This modification is dynamically balanced through the cooperative actions of O-linked N-acetylglucosamine transferase and O-GlcNAcase.

View Article and Find Full Text PDF