98%
921
2 minutes
20
Glycine 2-methyl proline glutamate (G-2mPE) is a proline-modified analogue to the naturally existing N-terminal tripeptide glycine-proline-glutamate that is a cleaved product from insulin-like growth factor-1. G-2mPE is designed to be more enzymatically resistant than glycine-proline-glutamate and to increase its bioavailability. The current study has investigated the protective effects of G-2mPE following hypoxic-ischemic brain injury in the neonatal brain. On postnatal day 7, Wistar rats were exposed to hypoxia-ischemia (HI). HI was induced by unilateral ligation of the left carotid artery followed by hypoxia (7.7% O2, 36 degrees C) for 60 min. The drug treatment started 2 h after the insult, and the pups were given either 1.2 mg/kg (bolus), 1.2 mg/ml once a day for 7 days, or vehicle. The degree of brain damage was determined histochemically by thionin/acid fuchsin staining. G-2mPE's anti-inflammatory properties were investigated by IL-1beta, IL-6, and IL-18 ELISA, and effects on apoptosis by caspase 3 activity. Vascularization was determined immunohistochemically by the total length of isolectin-positive blood vessels. Effect on astrocytosis was also determined in the hippocampus. Animals treated with multiple doses of G-2mPE demonstrated reduced overall brain injury 7 days after HI, particularly in the hippocampus and thalamus compared to vehicle-treated rats. The expression of IL-6 was decreased in G-2mPE-treated animals compared to vehicle-treated pups, and both the capillary length and astrogliosis were increased in the drug-treated animals. There was no effect on caspase 3 activity. This study indicates that peripheral administration of G-2mPE, starting 2 h after a hypoxic-ischemic insult, reduces the degree of brain injury in the immature rat brain. The normalization of IL-6 levels and the promotion of both neovascularization and reactive astrocytosis may be potential mechanisms that underlie its protective effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000105480 | DOI Listing |
JMIR Res Protoc
September 2025
Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, Medical School, University of Minnesota-Twin Cities, Minneapolis, MN, United States.
Background: Approximately 69% of Americans with spinal cord injury (SCI) have neuropathic pain. Research suggests that impairments in mental body representations (MBRs; ie, representations of the body in the brain) likely contribute to neuropathic pain. Clinical trials in adults with SCI, focused on restoring MBR, led to improvements in sensation and movement as well as neuropathic pain relief.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2025
University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada.
Post-Intensive Care Syndrome (PICS) is a serious condition involving physical weakness, depression, and cognitive impairment that develop during or after an intensive care unit (ICU) stay, often resulting in long-term declines in quality of life. Patients with acute respiratory distress syndrome (ARDS) and severe COVID-19 are at particularly high risk, yet the molecular mechanisms underlying PICS remain poorly understood. Here, we identify impaired Apelin-APJ signaling as a potential contributor to PICS pathogenesis via disruption of inter-organ homeostasis.
View Article and Find Full Text PDFAm J Speech Lang Pathol
September 2025
School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.
Purpose: The aim of this study was to reach consensus among researchers, clinicians, and service managers on the most important outcomes of cognitive-communication treatments for children and adolescents (ages 5-18 years) with traumatic brain injury, in the postacute stage of rehabilitation and beyond.
Method: This is an international three-round e-Delphi study. In Round 1, participants answered three open-ended questions, generating important treatment outcomes at three stages of development (5-11, 12-15, and > 15-18 years).
FASEB J
September 2025
Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.
View Article and Find Full Text PDFTissue Eng Regen Med
September 2025
Department of Biomedical Science, Catholic Kwandong University, 24 Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, South Korea.
Background: Neurotraumatic conditions, such as spinal cord injury, brain injury, and neurodegenerative conditions, such as amyotrophic lateral sclerosis, pose a challenge to the field of rehabilitation for its complexity and nuances in management. For decades, the use of cell therapy in treatment of neurorehabilitation conditions have been explored to complement the current, mainstay treatment options; however, a consensus for standardization of the cell therapy and its efficacy has not been reached in the medical community. This study aims to provide a comparative review on the very topic of cell therapy use in neurorehabilitation conditions in an attempt to bridge the gap in knowledge.
View Article and Find Full Text PDF